На правах рукописи

HA

ШАМШУРИН Максим Владимирович

СИНТЕЗ И ХАРАКТЕРИЗАЦИЯ ОКТАЭДРИЧЕСКИХ КЛАСТЕРНЫХ ГАЛОГЕНИДОВ НИОБИЯ И ТАНТАЛА

1.4.1. Неорганическая химия

АВТОРЕФЕРАТ диссертации на соискание учёной степени кандидата химических наук

Новосибирск, 2022

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институт неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук (ИНХ СО РАН)

Научный руководитель:

кандидат химических наук, старший научный сотрудник Михайлов Максим Александрович

Официальные оппоненты:

доктор химических наук, заведующий лабораторией Приходченко Петр Валерьевич ФГБУН Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук, г. Москва

кандидат химических наук, старший научный сотрудник Новиков Александр Сергеевич ФГБОУ ВО Санкт-Петербургский государственный университет, г. Санкт-Петербург

Ведущая организация:

ФГБОУ ВО «Московский государственный университет имени М. В. Ломоносова», г. Москва

Защита состоится «14» декабря 2022 г. в 12.00 час. на заседании диссертационного совета 24.1.086.01 на базе ИНХ СО РАН по адресу: просп. Академика Лаврентьева, 3, г. Новосибирск, 630090

С диссертацией можно ознакомиться в библиотеке ИНХ СО РАН и на сайте организации по адресу: <u>http://www.niic.nsc.ru/institute/dissertatsionnyj-sovet/</u>

Автореферат разослан «31» октября 2022 г.

Ученый секретарь диссертационного совета

ton

А.С. Потапов

доктор химических наук, доцент

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Октаэдрические кластеры переходных металлов 3-6 группы - обширный класс неорганических соединений. В основе большинства этих кластеров лежат высокосимметричные кластерные ядра $\{M_6X_8\}$ и $\{M_6X_{12}\}$, состоящий из металлического октаэдра и мостиковых атомов галогена (рис. 1).

Рис. 1. Строение кластеров [{M₆Xⁱ₈}X^a₆] (слева) и [{M₆Xⁱ₁₂}X^a₆] (справа). Индекс ⁱ относится к мостиковым лигандам (от нем. inner - внутренний), индекс ^a - к терминальным лигандам (от нем. ausser - внешний).

В этих кластерах реализуется прямое связывание металл-металл; соответственно, металлы находятся в низких степенях окисления (типичные электронные конфигурации – d^3 , d^4).

Октаэдрические галогенидные кластеры рассматриваются как привлекательные объекты для создания функциональных материалов как в виде дискретных компонентов, так и в виде координационных полимеров. Окислительно-восстановительные свойства октаэдрических кластеров можно использовать в сенсорных устройствах и каталитических системах. К примеру, фотолиз водных растворов аквакомплекса [Ta₆Br₁₂(H₂O)₆]²⁺ приводит к выделению водорода даже под действием красного света, что может быть использовано для разработки систем фотокаталитической генерации водорода из воды. Крайне привлекательна возможность использования иодидных кластеров тантала, сочетающих в одном кластерном ядре 18 тяжелых атомов, в качестве рентгеноконтрастных средств для компьютерной томографии. На основе октаэдрических кластеров можно синтезировать дендримеры. Дендримеры смогли бы свести к минимуму цитотоксичность при использовании кластеров in vivo, а также могли бы быть использованы для адресной доставки биологичекси активных соединений. Нелинейные оптические свойства кластеров могут найти применение в разработке сенсоров и ограничителей оптической мощности. При таком обилии прикладных перспектив химия кластерных галогенидов ниобия и тантала, несомненно, заслуживает детального и систематического изучения.

Степень разработанности темы исследования. Несмотря на более чем вековую историю и полувековой опыт достаточно активных исследований, развитие перспективных в плане практического использования направлений до сих пор тормозится неравномерной разработанностью химии октаэдрических галогенидных кластеров ранних переходных металлов.

Анализ литературы показал существование богатого разнообразия октаэдрических галогенидных кластеров Nb и Ta, соответствующих формуле $[M_6X_{12}L_6]^n$ (M = Nb, Ta; X = Cl, Br, I; L= терминальный лиганд). На данный момент существует более 80 публикаций, касающихся дизайна лигандов ядра $\{M_6X_{12}\}^{2+}$. Были синтезированы и охарактеризованы различные кластеры $[M_6X_{12}L_6]^4$ (M = Nb, Ta; X = Cl, Br) с апикальным лигандом L = H₂O, OH, CN, DMF, NCS, N₃, CH₃O, F, Cl, Br и др.). Однако существующие данные имеют множество пробелов. Так, например, кластеры, содержащие ядро $\{Nb_6Cl_{12}\}$ фигурируют в 157 публикациях, в то время как кластеры с ядром $\{M_6Br_{12}\}$ (M = Nb, Ta) представлены в меньшей степени, а кластерные фториды и иодиды тантала остаются несуществующими в виде дискретных соединений. Более того, систематические исследования встречаются редко, зачастую характеризация получаемых соединений приводится без сравнительного анализа.

С точки зрения квантовой химии, немногие доступные исследования этих соединений проводились несистемно, и на данный момент не было предложено никакого сопоставления производительности доступных уровней теории для исследования электронной структуры и спектральных свойств. При всей значимости ИК-спектроскопии, как метода характеризации, в литературе встречаются противоречивые и разрозненные экспериментальные данные по соотнесению колебательных частот. А Раман-спектроскопия галогенидных кластеров Nb и Ta упоминается лишь в одной работе.

Таким образом, в настоящее время остается еще много белых пятен, и накопление фундаментальных знаний в данной области остается актуальной задачей. Данная работа призвана внести вклад в развитие химии кластеров ниобия и тантала.

Целью диссертационной работы является систематическое изучение октаэдрических галогенидных кластеров ниобия и тантала, получение новых соединений на их основе и изучение их физикохимических свойств, а также возможности прикладного применения.

Задачи:

1. Разработка и оптимизация методов получения октаэдрических галогенидных кластерных комплексов ниобия и тантала.

2. Изучение реакционной способности полученных соединений в реакциях лигандного обмена, характеристика полученных соединений.

3. Теоретическое описание электронного строения октаэдрических галогенидных кластерных комплексов ниобия и тантала.

Научная новизна. Разработаны методики синтеза 16 новых соединений. Развита координационная химия кластерных иодидов тантала. Впервые синтезированы и изучены полные серии цианидных, галогенидных и фторидных комплексов [$\{M_6X_{12}\}L_6\}^{n-1}$ (M = Nb, Ta; X = Cl, Br, I; L = Cl, CN, F). Обнаружены реакции алкилирования цианидных комплексов с образованием ранее неизвестных изонитрильных комплексов $[{M_6X_{12}}(RNC)_6]^{2+}$ (R – Me, Et). Обнаружена склонность лигандов сильного поля (CN-, RNC) стабилизовать 16-электронное состояние {M₆X₁₂}²⁺, а лигандов слабого поля (Cl⁻) – окисленное 14- $\{M_6X_{12}\}^{4+}$. Фторид-ион состояние электронное занимает промежуточное положение и может стабилизировать 15-электронное состояние {М₆X₁₂}³⁺ в виде парамагнитных фторидных комплексов $[{Ta_6X_{12}}F_6]^{3-}$ (X = Cl, Br). На примере цианидных комплексов установлена относительная склонность кластерных ядер {M₆X₁₂}²⁺ к окислению: Nb < Ta, причем для кластеров ниобия Cl < Br; для кластеров тантала – Cl > Br > I.

Теоретическая и практическая значимость работы. В работе получены фундаментальные данные о методах синтеза кластерных соединений, их строении и кристаллических структурах, стабильности, окислительно-восстановительных И свойствах. Показана реакций принципиальная возможность проведения различных модификации лигандного окружения (замещение, алкилирование) с сохранением и/или сопутствующим окислением кластерного ядра. Обнаружено, что иодидный кластер тантала [Ta₆I₁₂(H₂O)₆]²⁺ является хорошим рентгеноконтрастным реагентом, сравнимым с коммерческим препаратом йогексолом, а также является фотокатализатором восстановления воды. Проведен подробный анализ как полученных в данной работе, так и опубликованных экспериментальных данных с привлечением квантово-химических расчетов методом DFT с целью получения системной картины связывания в кластерах и их спектральных свойств, что заставило пересмотреть традиционное отнесение наблюдаемых полос поглощения в ИК и КР-спектрах. В данной работе апробирован надежный и экономичный вычислительный

подход на основе DFT с использованием популярных функционалов в качестве основы для дальнейших исследований.

Методология и методы диссертационного исследования. Методология исследования базируется на синтетическом подходе, совмещенным с квантово-химическими расчетами, и включает в себя разработку и оптимизацию синтетических методик новых кластерных галогенидов, содержащих ядра $\{M_6X_{12}\}^n$ (M=Nb, Ta; X = Cl, Br, I; n = 2, 3, 4), получение монокристаллов для рентгеноструктурного анализа, очистку и подготовку полученных соединений для анализа состава, строения и физико-химических свойств.

В работе использовался широкий набор физико-химических методов анализа. Установление молекулярного строения галогенидных ниобия тантала проводилось с помощью кластеров И рентгеноструктурного анализа (РСА) монокристаллов. Анализ состава проводился методами элементного CHN-анализа И энергодисперсионной рентгеновской спектроскопии (ЭДС). Использовалась спектроскопия комбинационного рассеяния (КР) и инфракрасная спектроскопия (ИК). Растворы кластеров исследовались с помощью масс-спектрометрии высокого разрешения с распылением в электрическом поле (MC) И УФ-спектроскопии. Изучение кластеров электрохимических свойств проводилось методом циклической вольтамперометрии (ЦВА) в растворах. Размер и морфология наночастиц исследованы с помощью просвечивающей электронной микроскопии (ПЭМ). Парамагнитые кластеры изучены с помощью спектров электронного парамагнитного резонанса (ЭПР). Рентеноконтрастные свойства изучены с помощью компьютерной томографии (KT). Электронная структура спектральные И характеристики исследуемых кластеров получены с помощью квантово-химических расчетов в теории функционала плотности (ТФП).

На защиту выносятся:

- методы синтеза новых кластерных галогенидов ниобия и тантала;
- методы модификации терминальных лигандов, не затрагивающие кластерное ядро;
- данные о кристаллических структурах полученных соединений;
- результаты исследования состава, строения и свойств кластеров набором физико-химических методов;
- данные о каталитической активности кластерного иодида тантала;

- данные о рентгеноконтрастных свойствах кластерного иодида тантала;
- результаты изучения электрохимического поведения кластерных галогенидов ниобия и тантала;
- результаты квантово-химических расчетов кластерных галогенидов ниобия и тантала.

Личный вклад автора. Все эксперименты по получению кластеров, их очистке, кристаллизации, оптимизации препаративных методик полученных соединений выполнены лично аспирантом. Рентгеноструктурный анализ выполнен в ИНХ СО РАН к.х.н. Сухих Т.С. д.х.н. Абрамовым П.А. и д.х.н. Адониным С.А. Масс-спектры сняты д.х.н. Шевнем Д.Б. (ИНХ СО РАН). Измерение циклических вольтамперограмм проведено д.х.н. Гущиным А.Л. в ИНХ СО РАН. Результаты квантово-химических расчетов получены при содействии проф. PhD Э. Бенасси. Запись ИК-спектров производилась к.х.н. Мартыновой С.А. Интерпретация результатов ИК-спектроскопии, масс-спектрометрии, элементного СНN анализа, квантово-химических расчетов проводилась автором как самостоятельно, так и в контакте с профильными специалистами. Обсуждение результатов и подготовка публикаций проводилась совместно с научным руководителем.

Апробация работы. Основные результаты работы представлялись на конкурсе-конференции молодых учёных, посвящённой 110-летию со дня рождения д.х.н., профессора Валентина Михайловича Шульмана (Новосибирск: ИНХ СО РАН, 2018), и на XXIII Международной научно-практической конференции студентов и молодых ученых «Химия и химическая технология в XXI веке» имени выдающихся химиков Л.П. Кулёва и Н.М. Кижнера (Томский Политехнический Университет, г. Томск, 2022; отмечен дипломом I степени).

Публикации. Результаты работы опубликованы в 4 статьях, из них 2 – в рецензируемом российском и 2 - в международных рецензируемых журналах. Все статьи входят в списки, индексируемые базами данных Web of Science, Scopus и рекомендованные ВАК РФ.

Степень достоверности результатов исследований

Достоверность полученных в ходе работы результатов обеспечивается высоким теоретическим и экспериментальным уровнем выполнения исследования, на что указывают воспроизводимость и согласованность экспериментальных данных, полученных набором различных физико-химических методов. Результаты работы опубликованы в рецензируемых журналах высокого уровня, что говорит о признании результатов мировым научным сообществом. Результаты могут быть использованы для получения новых кластерных галогенидов ниобия и тантала, а также новых координационных полимеров на их основе, и для применения в фотокатализе.

Соответствие специальности 1.4.1. Неорганическая химия. Диссертационная работа соответствует пункту 1 «Фундаментальные основы получения объектов исследования неорганической химии и материалов на их основе», пункту 2 «Дизайн и синтез новых неорганических соединений и особо чистых веществ с заданными свойствами», пункту 5 «Взаимосвязь между составом, строением и неорганических свойствами соединений. Неорганические 6 «Определение наноструктурированные материалы», пункту надмолекулярного строения синтетических природных И неорганических соединений, включая координационные», пункту 7 «Процессы комплексообразования и реакционная способность координационных соединений, Реакции координированных лигандов» паспорта специальности 1.4.1. Неорганическая химия.

Объем и структура работы. Диссертация изложена на 143 страницах, включая 57 рисунков и 16 таблиц. Работа состоит из введения, литературного обзора, экспериментальной части, обсуждения результатов, заключения, выводов, списка литературы (155 источников) и приложения. Работа выполнялась по плану НИР Федерального государственного бюджетного учреждения науки Института неорганической химии им. А.В. Николаева СО РАН (г. Новосибирск), а также при поддержке грантов РФФИ (20-03-90010, 20-03-00410).

ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Во введении отражена актуальность работы, обоснована научная новизна и приведены выносимые на защиту основные положения. В первой главе приведен литературный обзор, содержащий сведения об известных методах синтеза и общих свойствах октаэдрических кластерных галогенидов ниобия и тантала. В отдельных параграфах рассматриваются химические превращения и свойства 14-, 15- и 16электронных кластеров, свойства и особенности кластерного иодида ниобия. Отдельно рассмотрена каталитическая активность кластеров в разнообразных реакциях, таких как дегидрирование спиртов, изомеризация диалкилбензолов, метилирование толуола, гидрирование алкинов и др.

Во **второй главе** содержатся сведения об использованных реактивах и оборудовании. В работе использовались основные приборы: ИК-спектрометры ScimitarFTS 2000 и Specord IR 75. Раман-

спектрометр LabRAM HR, Horiba spectrometer CVI Melles Griot (аргоновый лазер, $\lambda = 633$ nm), дифрактометр Bruker APEX DUO (излучение МоК $_{\alpha}$, $\lambda = 0,71073$ Å, графитовый монохроматор), спектрофотометр VarianCary 50 Conc, масс-спектрометр Quattro LC (Micromass, Manchester, U.K.). Электрохимические измерения выполнены методом ЦВА на анализаторе VA Computrace (Metrohm, Швейцария). Облучение растворов аквакомплекса [Та₆I₁₂(H₂O)₆]²⁺ проводилось с использованием ксеноновой лампы Hamamatzu (модель Lightnincure LC8, 800-200 нм, 100% W, диаметр световода 0,5 см). Фотореактор представляет собой цилиндрический сосуд (140 мм в диаметре и объемом 55 мл) из пирексного стекла, с впускным и выпускным отводами с независимыми клапанами и манометром для определения давления. Элементный анализ проводился с помощью настольного сканирующего микроскопа Hitachi TM3000 TableTop SEM на оборудовании Bruker QUANTAX 70 EDS и CHNS-анализатора vario MICRO cube. Центрифугирование проводили на приборе Allegra 200. Снимки ПЭМ были сделаны с помощью Jeol JEM-1400 ElectronMicroscope в ЦКП СО РАН.

Далее приведено описание экспериментов, таких как определение концентрации и коэффициентов экстинкции раствора $[Ta_6I_{12}(H_2O)_6]I_2$, изучение взаимодействия $[Ta_6I_{12}(H_2O)_6]I_2$ с полистиролсульфонатом натрия, и методика квантово-химических расчетов. Представлены методы синтеза и характеризации полученных соединений.

В **третьей главе** содержится обсуждение полученных в ходе работы результатов: анализ данных, полученных физико-химическими методами исследования представленных в работе соединений, фотокаталитические эксперименты и изучение рентгеноконтрастных свойств, а также анализ результатов квантово-химических расчетов электронной структуры и колебательных спектров галогенидных кластеров ниобия и тантала.

Кластеры [Ta6I12(DMF)6]I2 и [Ta6I12(H2O)6](BPh4)2

При изучении реакционной способности Ta_6I_{14} в первую очередь был получен аквакомплекс [$\{Ta_6I_{12}\}(H_2O)_6\}^{2+}$ растворением Ta_6I_{14} в воде. В процессе акватации происходит разрушение полимерной структуры исходного иодида. Постепенно образуется зелёный раствор.

Чтобы получить неопровержимые доказательства того, что в воде существует форма $[Ta_6I_{12}(H_2O)_6]^{2+}$, для получения кристаллического продукта мы использовали реакцию:

$$[Ta_6I_{12}(H_2O)_6]I_2 + 2NaBPh_4 \rightarrow [Ta_6I_{12}(H_2O)_6](BPh_4)_2 + 2NaI$$

И действительно, темные кристаллы, полученные при медленном упаривании водного раствора, содержащего смесь соответствующих реагентов, соответствуют формуле $[Ta_6I_{12}(H_2O)_6](BPh_4)_2$, согласно данным рентгеноструктурного анализа. Экстракция Ta_6I_{14} диметилформамидом приводит к образованию зеленого раствора, из которого удалось выделить монокристаллы $[Ta_6I_{12}(DMF)_6]I_2$.

[Ta₆I₁₂(DMF)₆]²⁺ [Ta₆I₁₂(H₂O)₆]²⁺ **Рис. 2.** Строение кластерных катионов [Ta₆I₁₂(DMF)₆]²⁺ и [Ta₆I₁₂(H₂O)₆]²⁺. Атомы водорода убраны для удобства.

В [Ta₆I₁₂(H₂O)₆](BPh₄)₂ длины связей Та-Та лежат в узком диапазоне 2,9221(6)–2,9432(6) Å. Для аналогичного кластера [Ta₆Br₁₂(H₂O)₆](BPh₄)₂·4H₂O, полученного раннее, этот предел составляет 2,8848(3)-2,8984(3) Å. Небольшие различия в длине связей для Та-I (2,7934(7)-2,8325(7) Å) и Та-О (2,315(5)-2,366(5) Å) указывают на незначительные структурные искажения. В [Ta₆Br₁₂(H₂O)₆](BPh₄)₂·4H₂O расстояния Ta-O (2,245(6)-2,335(7) Å) короче, что отражает более слабый матричный эффект мостиковых бромидных лигандов. Сравнивая геометрию кластеров [Ta₆I₁₂(H₂O)₆](BPh₄)₂ и [Ta₆I₁₂(DMF)₆]I₂ · DMF, нетрудно увидеть, что в последнем случае расстояния Та-I (2,7992(6)-2,8346(6) Å) остаются практически неизменными при замене DMF на H₂O, в то время как длины связей Та-О (2,225(5)-2,253(6) Å) заметно короче, а длины связей Та-Та (2,9416(4)-2,9637(5)) - длиннее, чем в аквакомплексе. Более короткие расстояния Та-О в случае DMF согласуются с увеличением донорного числа (26,6 против 18,0 для воды).

Циклическая вольтамперограмма водного раствора аквакомплекса [Ta₆I₁₂(H₂O)₆]I₂ (рис. 3) показала наличие двухстадийного квазиобратимого процесса одноэлектронного окисления:

 $[Ta_6I_{12}(H_2O)_6]^{2+} \rightarrow [Ta_6I_{12}(H_2O)_6]^{3+} \rightarrow [Ta_6I_{12}(H_2O)_6]^{4+}$

Рис. 3. Циклическая вольтамперограмма для ацетонитрильного раствора [Ta₆I₁₂(H₂O)₆]I₂; хлорсеребряный электрод.

Двухстадийное окисление-восстановление является общим свойством кластеров комплексов $\{M_6X_{12}\}^{2+}$ (M = Nb, Ta; X = Cl, Br) и отвечает последовательному удалению электронов со слабосвязывающего уровня a_{2u} . Электродный потенциал первой пары $\{Ta_6I_{12}\}^{2+}/$ $\{Ta_6I_{12}\}^{3+}$ равен 0,61 B, а потенциал пары $\{Ta_6I_{12}\}^{3+}/$ $\{Ta_6I_{12}\}^{4+}$ составляет 0,92 B (относительно стандартного хлорсеребряного электрода).

Рентгеноконтрастные свойства [Та6I12(H2O)6]I2

Одной из возможных областей применения кластера $[Ta_6I_{12}(H_2O)_6]I_2$ является биовизуализация методом компьютерной томографии, в которой применяются препараты, содержащие большое количество атомов иода. Однако аквакомплекс $[Ta_6I_{12}(H_2O)_6]^{2+}$ нестабилен в водной среде и деградирует в течение нескольких дней с образованием гидратированного Ta_2O_5 . При деградации кластера рН раствора изменяется от 3,1 до 2,7, что указывает, как и ожидалось, на образование НІ. Полииодидов или свободного I_2 не наблюдалось.

Для повышения стабильности аквакомплекса [Ta₆I₁₂(H₂O)₆]²⁺ в легкорастворимый анионный полимер воде использовался Отрицательно натрия (PSS, 2200 полистиролсульфонат кДа). заряженный PSS связывает катионы [Ta₆I₁₂(H₂O)₆]²⁺ посредством электростатического взаимодействия без прямой координации. Как и $[Ta_{6}I_{12}(H_{2}O)_{6}]I_{2}$ ожидалось, водные растворы демонстрируют повышенную стабильность в присутствии полистиролсульфоната (рис. 4).

Было предположено, что с добавлением PSS в растворе может происходить образование коллоидных частиц $[Ta_6I_{12}(H_2O)_6]$ @PSS. Чтобы проверить данную гипотезу, растворы исследовали методом фотонной корреляционной спектроскопии. Согласно полученным данным, на первый, второй и третий день средний размер частиц для

Рис. 4. Изменение оптической плотности водных растворов $[Ta_6I_{12}(H_2O)_6]I_2$ с PSS (шифр 7) и без него (шифр 2).

раствора с PSS составил 870, 1475 и 2192 нм, соответственно. В случае раствора сравнения (кластер без PSS) размер частиц составил 368, 179 и 169 нм, соответственно.

Частицы [Ta₆I₁₂(H₂O)₆]@PSS удалось осадить из раствора этанолом и выделить с помощью центрифугирования. Вещество имеет темно-зеленый цвет, что характерно для кластеров тантала, и косвенно указывает на его сохранение.

Исходя из полученных данных элементного анализа, мы предположили, что в полученном веществе на три структурных единицы полимера приходится один кластерный катион [C₈H₇SO₃⁻]_{3n}[Ta₆I₁₂(H₂O)₆]_n.

Для оценки рентгеноконтрастности были приготовлены водные растворы [Ta₆I₁₂(H₂O)₆]@PSS (0,0042 M; 0,0021 M;

Рис. 5. Снимки ПЭМ, полученные для редиспергированных в воде частиц [Та₆I₁₂(H₂O)₆]@PSS.

0,0010 М), один из образцов был приготовлен на 2 недели раньше. Образцы помещались в планшет с плоским дном и изучались при помощи компьютерного томографа (рис. 6).

Рис. 6. Компьютерная томограмма многолуночного планшета, содержащего растворы [Ta₆I₁₂(H₂O)₆]@PSS (шифр 7) и Йогексол (слева); зависимость рентгеновской плотности в ед. Хаунсфилда (HU) от концентрации кластерных комплексов (справа).

В качестве положительного контроля использовался коммерческий рентгеноконтрастный агент Омнипак (Omnipaque®, GE Healthcare), содержащий в качестве рентгеноконтрастного вещества Йогексол (Iohexol) (рис. 7).

Тангенс угла наклона аппроксимированной прямой зависимости рентгеновской плотности от концентрации исследуемого образца позволяет вычислить молярную рентгеновскую плотность (HU/M; единицы Хаунсфилда на молярность). Эта величина является количественным показателем эффективности рентгеноконтрастности. Для свежего и двухнедельного растворов [Ta₆I₁₂(H₂O)₆]@PSS эти величины равны 6,73±0,17×10⁴ HU/M и 6,49±0,08×10⁴ HU/M, соответственно. Для Йогексола молярная рентгеновская плотность равна 0,77±0,01×10⁴ HU/M, что в 8,4 – 8,7 раза меньше. Таким образом, исследование октаэдрических металлокластерных комплексов с точки зрения возможности их применения в качестве рентгеноконтрастных препаратов весьма оправдано.

Фотолиз водных растворов [Ta₆I₁₂(H₂O)₆]I₂

Нами было осуществлено два фотокаталитических эксперимента. В первом эксперименте облучался водный раствор 5,4×10⁻⁴ М кластера

[Та₆I₁₂(H₂O)₆]I₂ (10,6 мл H₂O), подкисленный 4,4 мл 85% H₃PO₄. Облучение проводилось с использованием ксеноновой лампы Нататати (модель Lightningcure LC8, 800-200 нм, диаметр световода 0,5 см). Общая продолжительность облучения составила 48 часов, по прошествии которого раствор аквакомплекса полностью деградировал: спектр поглощения конечного раствора представлял собой лишь базовую линию, а на дне фотореактора образовался коричневый порошок, состав которого не был установлен. Во втором эксперименте облучению подвергнулся водно-метанольный раствор 5,4×10⁻⁴ M [Ta₆I₁₂(H₂O)₆]I₂ (9,6 мл H₂O, 1 мл MeOH), подкисленный концентрированной ортофосфорной кислотой (4,4 мл H₃PO₄). По истечении 18,5 часов концентрация {Ta₆I₁₂}²⁺ не изменилась: спектр поглощения до и после облучения совпал. В обоих экспериментах осуществлялся периодический отбор проб газа из фотореактора, и определялось содержание водорода. В таблице 1 приводятся значения для каждого эксперимента в зависимости от времени облучения.

Таблица 1. Количественные данные анализов образцов газа в экспериментах									
№1 и №2.									
Время	Количество Н₂ (№1),	Количество Н ₂ (№2),							
облучения, ч	[ммоль(H ₂)/моль({Ta ₆ I ₁₂ } ²⁺)]	[ммоль(H ₂)/моль({Ta ₆ I ₁₂ } ²⁺)]							
1	0	0							
2	2,484	363,540							
3	2,730	480,160							
17,5	Нет данных	1439,883							
18,5	Нет данных	2318,633							
24	12,964	Нет данных							
48	44,277	6507,221							

Как следует из данных таблицы, добавление метанола приводит к существенному увеличению выхода водорода. В обоих случаях скорость выделения водорода возрастает в течение достаточно длительного времени. Максимальное количество водорода, которое удалось получить в присутствии метанола как донора электронов — 6507 ммоль.

Схема 1. Предполагаемый фотокаталитический процесс генерации водорода. Согласно схеме 1, кластерное ядро $\{Ta_6I_{12}\}^{2+}$ под действием облучения переходит в возбужденное состояние, $\{Ta_6I_{12}\}^{2+*}$, с которого осуществляется перенос электрона на протоны системы, при этом кластерное ядро переходит в окисленное состояние $\{Ta_6I_{12}\}^{3+}$ и восстанавливается введённым в систему донором электронов обратно в состояние $\{Ta_6I_{12}\}^{2+}$ (донор электронов при этом расходуется в процессе каталитической генерации водорода). Таким образом, нами впервые зафиксирована фотокаталитическая активность иодидного кластера $[Ta_6I_{12}(H_2O)_6]^{2+}$ в присутствие метанола в реакции получения водорода из воль.

Цианидные кластерные комплексы ниобия и тантала

Для получения цианидного комплекса $[Ta_6I_{12}(CN)_6]^{4-}$ мы провели следующую реакцию:

[Ta₆I₁₂(H₂O)₆]I₂ + 6KCN→ K₄[Ta₆I₁₂(CN)₆]+ 2KI +6H₂O При добавлении Ph₄PBr выпал зеленый осадок, из ацетонитрильного раствора которого диффузией паров диэтилового эфира удалось выделить кристаллы состава (Ph₄P)₄[Ta₆I₁₂(CN)₆].

Позднее, нами была разработана методика получения (Bu₄N)₄[Ta₆I₁₂(CN)₆]·CH₃CN по реакции Ta₆I₁₄ с Bu₄NCN в ацетонитриле. Синтез протекал при температуре 90°C в атмосфере аргона:

 $Ta_{6}I_{14} \xrightarrow{(Bu)_{4}NCN, t^{0}} [Ta_{6}I_{12}(CN)_{6})]^{4}$

Мы попытались распространить метод синтеза цианидных комплексов на реакции кластеров $K_4[M_6X_{18}]$ (M = Nb, Ta; X = Cl, Br) с Bu₄NCN. Однако оказалось, что он применим только для кластеров ниобия. В случае $K_4[Ta_6Cl_{18}]$ мы наблюдали быструю деградацию кластера с образованием Ta₂O₅. Тем не менее, удалось получить цианохлоридный кластер тантала из $(Et_4N)_2[Ta_6Cl_{18}]$ в одну стадию и в мягких условиях с относительно хорошим выходом, обрабатывая $(Et_4N)_2[Ta_6Cl_{18}]$ ацетонитрильным раствором Bu₄NCN, на воздухе при комнатной температуре. Бромидные кластеры тантала более

устойчивы: (Ph₄P)₄[Ta₆Br₁₂(CN)₆] был получен обработкой K₄[Ta₆Br₁₈] цианидом калия в водном растворе с последующим осаждением PPh₄Br.

цианопроизводных зарегистрированы Для пиклические вольтамперограммы (таб. 2). Первые потенциалы окисления близки к нулю. Для кластеров Та первый процесс окисления смещен в катодную область и проявляется при отрицательных потенциалах. Это говорит о том, что все кластеры должны окисляться на воздухе, особенно производные тантала. То, что они не подвержены влиянию кислорода воздуха в заметной степени, указывает на их высокий активационный 14-электронных барьер окисления лиамагнитных кластеров Примечательно, парамагнитным O₂. что восстановительная способность увеличивается в ряду Cl < Br для кластеров Nb, в то время как для кластеров Та мы наблюдаем обратную тенденцию: уменьшение восстановительной способности в ряду Cl > Br > I. Для кластеров Nb также было обнаружено обратимое восстановление при -1,49 В ([Nb₆Cl₁₂(CN)₆]⁴⁻) и -1,79 В ([Nb₆Br₁₂(CN)₆]⁴⁻). Для кластеров Та потенциалы восстановления были смещены в катодную область. В случае $[Ta_6Cl_{12}(CN)_6]^{4-}$ восстановление не обнаружено вплоть до -2 В. Для бромоцианидного кластера восстановление было необратимым. Только для иодидного кластера зарегистрирован обратимый процесс восстановления при -1,77 В при скорости развертки 1000 мВ/с. При 100 мВ/с процесс становится необратимым и появляются дополнительные пики. Это может быть связано с нестабильностью продуктов восстановления.

Кластер	Восстановление		Окисление			
	$E_{1/2} / B$	$\Delta E^{[b]}$ /	$E_{1/2} / \mathbf{B}$		$\Delta E^{[b]}$ / м ${ m B}$	
		мВ	(1)	(2)	(1)	(2)
$[Nb_6Cl_{12}(CN)_6]^{4-}$	-1,49	70	0.09	0,70	95	72
$[Nb_6Br_{12}(CN)_6]^{4-}$	-1,79	70	0.01	0,43	65	65
$[Ta_6Cl_{12}(CN)_6]^{4-}$	-	-	-0.27	0,32	125	119
$[Ta_6Br_{12}(CN)_6]^{4-}$	-1,89 ^[c]	-	-0.14	0,38	77	72
$[Ta_6I_{12}(CN)_6]^{4-}$	-1,77	60 ^[d]	-0.01	0,44	71	65 ^[d]

Таблица 2. Окислительно-восстановительные потенциалы^[a] кластеров $[M_6X_{12}(CN)_6]^{4-}$ в CH₃CN.

^[a] *E*, V vs Ag/AgCl. ^[b] $\Delta E = |E_a - E_c|$. ^[c] *E*_c (необратимое). ^[d] 1000 мB c⁻¹.

Метилирование цианидных кластеров: получение изонитрильных комплексов

Метилирование кластеров $[Nb_6Cl_{12}(CN)_6]^{4-}$ и $[Ta_6I_{12}(CN)_6]^{4-}$ осуществлялось с помощью CF_3SO_3Me . Стехиометрия, по аналогии с синтезом цианидного производного, подбиралась из расчета два эквивалента CF_3SO_3Me на один цианидный лиганд, т.е. 1:12. В ходе реакции в обоих случаях образуется темно-зеленый раствор, содержащий кластерные катионы $[M_6X_{12}(CNMe)_6]^{2+}$, и аморфный

поддающийся осалок. не идентификации (РФА и ИК-спектр неинформативны). Из растворов были выращены темные кристаллы, пригодные для РСА. Строение полученных веществ соответствует формулам [Ta₆I₁₂(CNMe)₆](CF₃SO₃)₂ и [Nb₆Cl₁₂(CNMe)₆](CF₃SO₃)₂. Ha приведена рис. 8 структура $[Ta_6I_{12}(CNMe)_6](CF_3SO_3)_2.$

Средние длины связей Та-I составили 2,8403(4) Å, Та-Та – 3,0640(3) Å, Та-С – 2,3133(6) Å. Их значения несколько выше таковых для изоэлектронного

Рис. 8. Структура [Ta₆I₁₂(CNMe)₆](CF₃SO₃)₂.

предшественника. Для $[Nb_6Cl_{12}(CNMe)_6](CF_3SO_3)_2$ длины связей Nb-Cl составили 2,4592(1) Å, Nb-Nb – 2,9123(8) Å, Nb-C – 2,3193(6) Å и не сильно отличаются от таковых в цианидном кластере, хотя расстояние Nb-C несколько увеличено.

Галогенидные комплексы (Bu4N)2[M6X12Cl6] (M=Nb, Ta; X=Cl, Br)

Соединения получены по реакции октагидратов M_6X_{14} • $8H_2O$ (M=Nb, Ta; X=Cl, Br) с хлористым тионилом в присутствии Bu4NBr. В ходе этих превращений кластерные ядра претерпевают двухэлектронное окисление. В данном случае хлористый тионил выступает не только в качестве растворителя, но и как окислитель и как источник Cl⁻, который занимает терминальные позиции. Из получаемых растворов бурого цвета с помощью диффузии паров диэтилового эфира можно получить крупные (до 1,5 см) кристаллы, которые, согласно данным PCA и элементного анализа, имеют состав (Bu₄N)₂[M₆X₁₂Cl₆] (M=Nb, Ta; X=Cl, Br).

Для хлоридных кластеров были записаны циклические вольтамперограммы в области от 0,80 до -1 В. Значения потенциалов

полуволн для $[Nb_6Cl_{18}]^{2-}$ составили (1) $E_{1/2} = 0,32$ В ($\Delta E = 90$ мВ); (2) $E_{1/2} = -0,21$ В ($\Delta E = 89$ мВ). для $[Ta_6Cl_{18}]^{2-}$ — (1) $E_{1/2} = 0,01$ В ($\Delta E = 89$ мВ); (2) $E_{1/2} = -0,52$ В ($\Delta E = 89$ мВ). Оба процесса являются обратимыми, разница между катодным и анодными пиками в всех случаях составляет около 90 мВ. Для комплекса ниобия окислительно-восстановительные потенциалы смещены в более анодную область примерно на 0.3 В по сравнению с кластером тантала, т.е. кластер тантала восстанавливается труднее, чем кластер ниобия.

Кластер [Li(диглим)2]2[Ta6Br18]

В данной работе показано, что реакция между Та, Br₂ и LiBr (720°, 2 сут, мольное соотношение 1,5:1,75:1,0) приводит к образованию продукта состава Li₄[Ta₆Br₁₈]. Экстракция диглимом продукта приводит к кристаллизации кластера состава [Li(диглим)₂]₂[Ta₆Br₁₈]. Соединение представляет собой двойную комплексную соль, в которой кристаллическая решетка построена из комплексных катионов [Li(диглим)₂]⁺ и анионов [Ta₆Br₁₈]². В ходе реакции происходит двухэлектронное окисление кластерного ядра {Ta₆Br₁₂}²⁺ в {Ta₆Br₁₂}⁴⁺, который, координируясь шестью терминальными лигандами, образует анион [Ta₆Br₁₈]². Окислителем выступает кислород воздуха.

В комплексном катионе [Li(диглим)₂]⁺ координационное окружение иона Li⁺ отвечает искаженному октаэдру, который образован координацией двух молекул диглима, выступающих как тридентатные лиганды.

Кластер

[K(C24H32O8)(CH3COCH3)]2(Ph4P)2[Ta6I12(NCS)6] ·CH3COCH3

Изотиоцианатное производное кластерного иодида тантала получено по реакции Та₆I₁₄ с роданидом калия в кипящем ацетонитриле под аргоном. Для облегчения кристаллизации образующегося [Ta₆I₁₂(NCS)₆]⁴⁻ в комбинации с ионами калия к реакционному раствору добавлялись краун-эфиры; в конце концов, кристаллический продукт [K(C₂₄H₃₂O₈)(CH₃COCH₃)]₂(Ph₄P)₂[Ta₆I₁₂(NCS)₆]·CH₃COCH₃ состава удалось получить в присутствии дибензо-24-краун-8 и катиона тетрафенилфосфония с умеренным (29 %) выходом. Это устойчивое на воздухе темно-зеленое кристаллическое вещество. Строение установлено с помощью РСА (рис. 10), состав подтвержден данными элементного анализа. В структуре присутствует сольватный ацетон, который выходит из полостей при высушивании соединения.

Рис. 10. Кристаллическая упаковка ионов в изотиоцианатном иодидном кластере тантала. Катионы [К(дибензо-24-краун-8)(CH₃COCH₃)]⁺ показаны черным. Атомы Н не показаны.

Кластеры (Me4N)x[M6X12F6] (M=Nb, Ta; X=Cl, Br)

Замещение терминальных позиций кластеров фтором осуществляли по реакции октагидратов $M_6X_{14} \cdot 8H_2O$ (M=Nb, Ta; X=Cl, Br) с тетраметиламмонием фтористым в метаноле при перемешивании в стандартных условиях. Из темно-оливковых растворов удалось получить гигроскопичные кристаллы и охарактеризовать полученные соединения. Оказалось, что в ходе этих превращений кластеры $M_6Br_{14} \cdot 8H_2O$ претерпевают одноэлектронное окисление, а $Nb_6Cl_{14} \cdot 8H_2O$ реагирует без потери электрона.

Согласно данным PCA и элементного анализа, кристаллические продукты имеют состав $(Me_4N)_x[M_6X_{12}F_6]$ (M = Nb, Ta; X = Cl, Br; x = 3, 4).

В спектрах ЭПР для твердых фторобромидных кластеров наблюдался сигнал, детектирующий наличие неспаренного электрона, делокализованного на кластер-центрированной а₂и орбитали (рис. 11).

Таким образом, образование фторидных комплексов в случае M₆Br₁₄•8H₂O сопровождается одноэлектронным окислением, а Nb₆Cl₁₄•8H₂O реагирует без потери электрона.

Получение [Nb₆I₈(t-BuNH₂)₆]

С целью получения устойчивых производных $[Nb_6I_8L_6]$ было изучено взаимодействие кластера Nb_6I_{11} с третбутиламином в аргоне при комнатной температуре. В ходе реакции

при компатной температуре. В ходе реакции образуется темно-красный раствор, из которого с помощью наслоения изопропанола удалось выделить монокристаллы. Соединение представляет собой нейтральный кластер {Nb₆I₈}, окруженный 6 молекулами третбутиламина, координированными по атомам азота (рис. 12), элементный анализ подтвердил полученный результат.

По данным РСА, средние значения основных длин связей равны 2,8213(6) Å для Nb-Nb, 2,8983(5) Å для Nb-I и 2,4281(3) Å для Nb-N. Если сравнивать с [Nb₆I₈(CH₃NH₂)₆], описанным в, то обнаружится, что расстояния

Рис. 12. Структура [Nb₆I₈(C₄H₉NH₂)₆].

несколько различаются: 2,754(4) Å для Nb-Nb, 2,939(3) Å для Nb-I и 2,441(1) Å для Nb-N, что можно обяснить стерическим эффектом лиганда.

Квантово-химические расчеты кластеров [М6Х12L6]ⁿ

Для кластеров $[M_6X_{12}L_6]^n$ была уточнена электронная структура и найден оптимальный расчетный протокол на основании экспериментальных геометрических параметров и колебательной спектроскопии, соответствующий уровню теории DFT B3LYP / Def2– TZDPP. Получены фундаментальные данные о спектральных характеристиках кластеров. Впервые нами были аналитически соотнесены колебательные спектры (рис. 13), и уточнен вклад всех колебаний кластерных ядер.

Рисунок 13. Экспериментальные и рассчитанные ИК (а) и Раман спектры (b) дискретных кластеров $[M_6X_{18}]^4$ (M = Nb, Ta; X = Cl, Br). Уровень теории: DFT B3LYP / Def2–TZVPP.

Заключение

В работе получены и охарактеризованы новые соединения на основе октаэдрических кластерных галогенидов ниобия и тантала, изучены особенности их строения и физико-химические свойства, получены спектроскопические данные. Разработаны синтетические подходы к изменению координационного окружения кластерных ядер ${M_6X_{12}}^{2+}$ (M = Nb, Ta; X = Cl, Br, I), которые открывают возможности контролируемой модификации лигандного окружения и «настройки» желаемых свойств соединений. Расширен ряд известных галогенидных кластеров ниобия и тантала, включая получение неизвестных ранее иодидных кластеров тантала комплексов фторидными И с терминальными лигандами; изучены методы получения и их строение. В частности, разработана методика получения смешанных кластерных галогенидов, которые могут являться удобными прекурсорами в реакциях лигандного замещения. Продемонстрировано наличие рентгеноконтрастных свойств и фотокаталитической активности аквапроизводного кластерного иодида тантала. Апробирован и предложен надежный метод квантово-химических расчетов свойств кластерных комплексов и сформировано современное представление об электронной структуре и спектральных характеристиках этих объектов, что, безусловно, облегчит получение новых знаний о кластерных галогенидах ниобия и тантала в недалеком будущем.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

- 1. Показано, что в донорных растворителях (вода, DMF) Та6I14 сольватацию, сопровождающуюся претерпевает полным вхождением растворителя в координационную сферу кластерного ядра $\{Ta_6I_{12}\}^{2+}$ с образованием $[Ta_6I_{12}(DMF)_6]^{2+}$ и $[Ta_6I_{12}(H_2O)_6]^{2+}$. Показано, что реакция Та₆I₁₄ с KSCN в ацетонитриле в присутствии 24-дибензо-краун-8 приводит образованию к кластера [Ta₆I₁₂(NCS)₆]⁴. Это первые дискретные соединения кластерного качестве центра иолила тантала в коорлинации. Продемонстрировано, что стабильность растворов [Ta₆I₁₂(H₂O)₆]²⁺ значительно повышается в присутствии полистиролсульфоната выделить натрия, наночастицы ИЗ которых можно $[Ta_6I_{12}(H_2O)_6]@PSS,$ обладающие рентгеноконтрастными свойствами.
- 2. Показана возможность фотокаталитического окисления воды в присутствии кластера [Ta₆I₁₂(H₂O)₆]²⁺
- 3. Получено и полностью охарактеризовано семейство цианидных кластеров [M₆X₁₂(CN)₆]⁴⁻ (M=Nb, Ta; X=Cl, Br, I). Показана склонность этих соединений к двухэлектронному окислению. Разработаны методики модификации цианидных лигандов в кластерах [M₆X₁₂(CN)₆]⁴⁻ (M=Nb, Ta; X=Cl, I) путём их алкилирования с образованием стабильных изонитрильных комплексов [M₆X₁₂(CNMe)₆]²⁺.
- Получено и охарактеризовано семейство новых смешанногалогенидных кластеров (Bu₄N)₂[M₆X₁₂Cl₆] и (Me₄N)_x[M₆X₁₂F₆] (M=Nb, Ta; X=Cl, Br, x=3, 4), среди которых фторобромиды являются парамагнитными.
- 5. Был создан и использован недорогой, но точный вычислительный протокол на основе расчетов ТФП. Впервые была предложена и подтверждена подходящая теоретическая модель для полимерного иодида тантала. Уточнена электронная структура кластеров с учетом корреляции электронов. Эти результаты обеспечивают фундаментальную основу для дальнейшего изучения природы кластерных галогенидов ниобия и тантала.
- 6. Интерпретация ИК- и Раман спектров галогенидных кластеров [M₆X₁₈]⁴⁻ была полностью пересмотрена в сравнении с традиционной на основании новых достоверных расчетных данных; предложены важные поправки, на основе чего было получено полное знание о спектральных свойствах данных соединений.

Основное содержание диссертации изложено в следующих работах:

- Maxim V. Shamshurin, Maxim A. Mikhaylov, Taisia Sukhikh, Enrico Benassi, Alexandra R. Tarkova, Alexey A. Prokhorikhin, Evgeniy I. Kretov, Michael A. Shestopalov, Pavel A. Abramov, Maxim N. Sokolov. Octahedral {Ta₆I₁₂} Clusters// Inorganic Chemistry. – 2019. – v. 58(14). – p. 9028-9035.
- Шамшурин М.В., Сухих Т.С., Михайлов М.А., Шевень Д.Г., Соколов М.Н. Координация тиоцианата к кластеру {Ta₆I₁₂}²⁺. Получение и кристаллическая структура [К(дибензо-24-краун-8)(CH₃COCH₃)]₂(Ph₄P)₂[Ta₆I₁₂(NCS)₆]//ЖСХ. - 2020. - т.61. -№5. с.768.
- Шамшурин М.В., Абрамов П.А., Михайлов М.А., Соколов М.Н. Получение и кристаллическая структура кластерного бромидного комплекса тантала [Li(диглим)₂]₂[Ta₆Br₁₈]// ЖСХ. – 2022. - т.63. - №1. - с. 42.
- Shamshurin M.V., Martynova S.A., Sokolov M.N., Benassi E. Niobium and tantalum octahedral Halides: Vibrational properties and Intra–Cluster interactions // Polyhedron. – 2022. – Vol. 226. – P. 116107.

Материалы диссертации представлены на конференциях:

- Шамшурин М. В. Синтез и характеризация октаэдрических иодидных кластеров тантала. //Конкурс-конференция молодых учёных, посвященная 110-летию со дня рождения д.х.н., профессора Валентина Михайловича Шульмана. 24-25 декабря 2018 г. – Новосибирск.
- Шамшурин М. В. Синтез новых октаэдрических кластеров ниобия и тантала. // Международной научно-практической конференции студентов и молодых ученых «Химия и химическая технология в XXI веке» имени выдающихся химиков Л.П. Кулёва и Н.М. Кижнера. 16-19 мая 2022 г. – г. Томск.

Автор выражает искреннюю благодарность к.х.н. М.А. Михайлову, д.х.н. М.Н. Соколову, д.х.н. П.А. Абрамову, к.х.н. Т.С. Сухих, д.х.н. С.А. Адонину, к.х.н. С.А. Мартыновой, проф. Э. Бенасси, а также всем сотрудникам лаборатории синтеза комплексных соединений (ИНХ СО РАН), и своим родным, друзьям, и близким, без чьей поддержки создание этой работы было бы невозможным.

Шамшурин Максим Владимирович

СИНТЕЗ И ХАРАКТЕРИЗАЦИЯ ОКТАЭДРИЧЕСКИХ КЛАСТЕРНЫХ ГАЛОГЕНИДОВ НИОБИЯ И ТАНТАЛА

Автореферат диссертации на соискание учёной степени кандидата химических наук Изд. лиц. ИД № 04060 от 20.02.2001. Подписано к печати и в свет 11.10.2022. Формат 60×84/16. Бумага № 1. Гарнитура "Times New Roman" Печать оперативная. Печ. Л1,5. Уч.-изд. л. 1,25 Тираж 120. Заказ № 154 Федеральное государственное бюджетное учреждение науки Институт неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук Просп. Акад. Лаврентьева, 3, Новосибирск, 630090