ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ НЕОРГАНИЧЕСКОЙ ХИМИИ ИМЕНИ А.В. НИКОЛАЕВА СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК МИНОБРНАУКИ РОССИИ

На правах рукописи

ПРОНИН Алексей Сергеевич

НОВЫЕ ТЕТРАЭДРИЧЕСКИЕ ЦИАНИДНЫЕ КЛАСТЕРНЫЕ КОМПЛЕКСЫ РЕНИЯ

1.4.1. Неорганическая химия

Диссертация на соискание ученой степени кандидата химических наук

> Научный руководитель: доктор химических наук Миронов Юрий Владимирович

Новосибирск – 2021

оглавление

СПИСОК СОКРАЩЕНИЙ5
ВВЕДЕНИЕ7
1. ЛИТЕРАТУРНЫЙ ОБЗОР 15
1.1. Методы получения кластерных соединений рения 18
1.1.1. Высокотемпературный ампульный синтез 18
1.1.1.1. Получение кластерных комплексов из металлического рения 19
1.1.1.2. Получение кластерных комплексов рения из халькогенидов, включая
реакции «вырезания» кластерного ядра 21
1.1.1.3. Получение кластерных комплексов рения из галогенидов, включая
реакции конденсации
1.1.1.4. Получение кластерных комплексов рения из халькогалогенидов
методом «вырезания» кластерного ядра
1.1.2. Синтез в растворе 27
1.1.2.1. Биядерные кластерные комплексы рения
1.1.2.2. Трехъядерные кластерные комплексы рения
1.1.2.3. Четырехъядерные кластерные комплексы рения
1.1.2.4. Шестиядерные кластерные комплексы рения
1.2. Модификация внутреннего лигандного окружения кластерных комплексов
рения
1.2.1. Октаэдрические комплексы
1.2.2. Биоктаэдрические комплексы 42
1.3. Методы получения гетерометаллических кластерных соединений 45
1.3.1. Высокотемпературный синтез 45
1.3.1.1. Кластеры {М4} 45
1.3.1.2. Кластеры {М ₆ } 45
1.3.2. Синтез в растворе 46

1.3.2.1. Кластеры {М4}	46
1.3.2.2. Кластеры {M ₆ }	47
2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ	50
2.1. Исходные реагенты, оборудование	50
2.2. Методики синтеза	52
3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ	64
3.1. Получение тетраэдрических кластерных комплексов из ReI ₃	64
3.1.1. Халькоцианидные кластерные комплексы рения	64
3.1.2. Кластерный комплекс с лигандами ССN ³⁻	66
3.1.2.1. Предположительная схема образования лиганда CCN ³⁻	68
3.1.2.2. Описание кристаллической структуры	70
3.1.3. Пниктоцианидные кластерные комплексы рения	71
3.1.3.1. Описание кристаллических структур	75
3.1.4. Халькопниктоцианидные кластерные комплексы рения	78
3.1.4. Халькопниктоцианидные кластерные комплексы рения3.1.4.1. Комплексы с мышьяком	78 78
 3.1.4. Халькопниктоцианидные кластерные комплексы рения 3.1.4.1. Комплексы с мышьяком 3.1.4.2. Описание кристаллических структур 	78 78 80
 3.1.4. Халькопниктоцианидные кластерные комплексы рения 3.1.4.1. Комплексы с мышьяком 3.1.4.2. Описание кристаллических структур 3.1.4.3. Комплексы с сурьмой	78 78 80 82
 3.1.4. Халькопниктоцианидные кластерные комплексы рения	78 78 80 82 85
 3.1.4. Халькопниктоцианидные кластерные комплексы рения	78 78 80 82 85 87
 3.1.4. Халькопниктоцианидные кластерные комплексы рения	78 78 80 82 85 87 89
 3.1.4. Халькопниктоцианидные кластерные комплексы рения	78 78 80 82 85 87 89 89
 3.1.4. Халькопниктоцианидные кластерные комплексы рения	78 78 80 82 85 87 89 89 89
 3.1.4. Халькопниктоцианидные кластерные комплексы рения	78 78 80 82 85 87 89 89 89 89 91
 3.1.4. Халькопниктоцианидные кластерные комплексы рения	78 78 80 82 85 87 89 89 89 89 91 91
 3.1.4. Халькопниктоцианидные кластерные комплексы рения	78 78 80 82 85 87 89 89 89 91 91 93

3.3	. Получение	гетерометаллических	рений-молибденовых	И	рений-
вольфра	мовых кластерн	ых комплексов		•••••	102
	3.3.1. Комплексь	ı Re/Mo			102
	3.3.2. Комплексь	и Re/W			103
	3.3.3. Исследован	ние электрохимических с	войств		106
	3.3.4. Исследован	ние магнитных свойств			108
	3.3.5. Описание н	сристаллических структу	р		109
3.4	. Получение кл	астерных комплексов р	ения с ранее неизвест	ными	типами
кластер	ных ядер				113
	3.4.1. Семиядерн	ые комплексы			113
	3.4.1.1. Исслед	ование магнитных свойс	ТВ		115
	3.4.1.2. Описан	ние кристаллических стр	уктур		116
	3.4.2. Восьмияде	рный комплекс			118
	3.4.2.1. Описан	ние кристаллической стр	уктуры		120
	3.4.3. Двенадцати	иядерный комплекс		•••••	121
	3.4.3.1. Описан	ние кристаллической стр	уктуры		122
ЗАКЈ	ІЮЧЕНИЕ				123
OCH	ОВНЫЕ РЕЗУЛІ	ЬТАТЫ И ВЫВОДЫ			124
СПИ	СОК ЛИТЕРАТ	УРЫ			126
БЛАІ	ГОДАРНОСТИ.				145
ПРИ.	ПОЖЕНИЕ				146

СПИСОК СОКРАЩЕНИЙ

3-Меру – 3-метилпиридин

3,5-Ме₂РzH – 3,5-диметилпиразол

bimy – бензимидазол-2-илиден

Bn - бензил

Ви – н-бутил

DMF – N, N-Диметилформамид

dppe – 1,2-бис(дифенилфосфино)этан

durene – 1,2,4,5-тетраметилбензол

ESI-MS – масс-спектрометрия с использованием ионизации распылением в

электрическом поле

Et – этил

ImBr – 1-этил-3-метилимидазолий

IMes – 1,3-бис(2,4,6-триметилфенил)имидазол-2-илиден

Ме-метил

МеОН – метанол

РЕt₃ – триэтилфосфин

Ph - фенил

РМе2Ph – диметилфенилфосфин

Pr – пропил

Ру – пиридин

ТВР – 4-*трет*-бутилпиридин

ИК – инфракрасное излучение

ИСП-АЭС – атомно-эмиссионная спектрометрия с индуктивно-связанной плазмой

КСЭ – кластерные скелетные электроны

м.д. – миллионная доля

МПГ – металлы платиновой группы

Пр. гр. – пространственная группа

РСА – рентгеноструктурный анализ

РФА – рентгенофазовый анализ

ЦВА – циклическая вольтамперометрия

ЭДС – энергодисперсионная рентгеновская спектроскопия

- ЭСП электронная спектроскопия поглощения
- ЯМР ядерный магнитный резонанс

введение

Актуальность темы

Кластерные комплексы рения известны уже несколько десятилетий и привлекают большое внимание исследователей, так как обладают рядом перспективных физикохимических свойств, среди которых можно выделить высокую рентгеновскую контрастность [1-3], яркую фосфоресценцию в красной и ближней инфракрасной областях [4-6], способность фотосенсибилизировать процесс генерации синглетного кислорода [7], парамагнетизм, а также способность подвергаться обратимым окислительно-восстановительным процессам, протекающим без значительного изменения геометрии кластера [8, 9]. Жесткая геометрия металлоостова, высокая стабильность и предсказуемые химические свойства кластерных комплексов при наличии рассмотренных выше физико-химических особенностей делают их перспективными строительными блоками для дизайна функциональных материалов различных типов [9-12].

Кроме того, в последние годы активно изучаются гетерометаллические кластерные комплексы рения и молибдена. Интерес к изучению этих соединений вызван наличием у них потенциально полезных физико-химических свойств (в первую очередь электрохимических и магнитных), которые нехарактерны для гомометаллических аналогов. Было показано, что замещение атомов металлоостова на атомы другого металла является полезным инструментом, позволяющим напрямую влиять на свойства кластерного комплекса [13-15].

Следует отметить, что современные методы получения кластерных комплексов являются чаще всего многостадийными и продолжительными по времени (вплоть до нескольких недель), поэтому поиск новых способов синтеза, позволяющих получать такие соединения быстро и с меньшим количеством стадий (в идеале в одну стадию), является актуальной задачей. Кроме того, важная роль в данном направлении исследований принадлежит не только разработке простых и удобных методик синтеза известных комплексов, но и получению новых соединений с заданным строением и контролируемыми свойствами.

Степень разработанности темы исследования

Несмотря на то, что становление химии кластерных комплексов произошло ещё в 60-х годах прошлого века, интерес к получению кластерных соединений неизменно

растёт, и как было описано выше, актуальной задачей остается разработка методик синтеза новых комплексов. Часть работ, посвященная решению данной задачи, направлена на поиск перспективных исходных соединений для получения кластерных комплексов. В данной работе в качестве предшественника для синтеза новых кластеров нами было предложено использовать иодид рения (III).

Химические свойства кластерных тригалогенидов рения активно изучались в 60–80-е годы прошлого века. Если реакции с участием хлоридов и бромидов рения были изучены хорошо, то иодид даже сам по себе был изучен недостаточно, не говоря уже о его реакционной способности. Так, до начала данной диссертационной работы химия трииодида ограничивалась синтезом [16] и структурной характеризацией [17] самого $ReI_3 = Re_3I_9$ и смешаннолигандных комплексов [$\{Re_3I_3\}Cl_{9-x}(H_2O)_x$]^{(3-x)-} [18, 19]. Кроме того, был получен кластерный комплекс с ядром $\{Re_3I_3\}^n$ и изоцианидными лигандами [20], однако структурные данные для этого соединения до сих пор отсутствуют.

Таким образом, химическая активность и синтетический потенциал трииодида рения изучены недостаточно. Немногочисленность данных частично объясняется высокой склонностью Re₃I₉ к химическим превращениям, затрагивающим кластерное ядро: окислению до ReO₂⁺ в реакциях с пиридином, γ -пиколином, пиразином и 3,5-лутидином на воздухе [21, 22] или восстановительным распадом до [Re₂I₄(PR₃)₄] в реакциях с фосфинами [23]. Синтетический потенциал этого соединения был подчеркнут в 2014 году в публикации М. Кгаwсzyk et al. Так, взаимодействие ReI₃ с избытком 3-метилпиридина (3-Меру) и водой в мягких условиях привело к образованию октаэдрического кластерного комплекса [{Re₆(µ-O)₁₂}(3-Меру)₆]BPh₄ [24].

На основании вышеизложенного, мы предположили, что ReI₃ может быть перспективным прекурсором для синтеза новых кластерных комплексов рения в относительно мягких условиях, при которых другие исходные соединения остаются инертными.

Целью диссертационной работы является получение новых цианидных кластерных комплексов рения исходя из ReI₃, а также изучение свойств полученных соединений.

В рамках достижения данной цели решались следующие задачи:

– разработка методов получения новых кластерных комплексов рения с элементами
 15 и 16 групп периодической системы, а также их выделение в индивидуальном виде;

изучение возможности модификации внутреннего лигандного окружения в полученных соединениях;

 – разработка методов получения новых гетерометаллических рений-молибденовых и рений-вольфрамовых кластерных комплексов и их выделение в виде индивидуальных соединений;

– подробная характеризация полученных соединений с использованием различных аналитических и спектроскопических методов (РСА, РФА, ЯМР-, ИК- и электронная спектроскопия, масс-спектрометрия, элементный анализ и др.);

– изучение влияния состава и строения кластерного ядра на свойства и реакционную способность полученных кластерных комплексов.

Научная новизна работы

Показано, что иодид рения ReI₃ является перспективным предшественником для синтеза кластерных комплексов. В ходе работы получено, охарактеризовано и выделено в индивидуальном виде 36 новых кластерных соединений. Впервые получены цианидные кластерные комплексы рения с такими внутренними лигандами, как CCN³⁻, As³⁻, AsO³⁻, PO^{3-} , PO_2^{3-} , Sb^{3-} , Bi^{3-} , $SbO(H_2O)_2^{3-}$, некоторые из которых ранее не были описаны не только для кластерной химии, но и для координационной химии в целом. Подробно исследованы побочные продукты, образующиеся при синтезе комплекса $K_8[{Re_4(CCN)_4}(CN)_{12}]$, и предложена схема образования лиганда CCN³⁻ в ходе реакции. Экспериментально показана возможность модификации внутреннего лигандного окружения комплексов с элементами 15 группы.

Получена серия из восьми четырехъядерных гетерометаллических рениймолибденовых и рений-вольфрамовых кластерных комплексов. В ходе работы были подобраны условия для выделения шести из них в индивидуальном виде, а также изучены магнитные и электрохимические свойства полученных соединений. Отметим, что комплексы [{Re_xW_{4-x}Q₄}(CN)₁₂]^{6/7-} (x = 1, 2; Q = S, Se) являются первыми примерами гетерометаллических кластеров рения и вольфрама.

Получены новые типы кластерных комплексов рения – семиядерные, восьмиядерные и двенадцатиядерные. Обнаружено, что для семиядерных комплексов $K_8[{Re_3Se_4(CN)_9} {Re_3MSe_4}(CN)_9] (M = Mo, W)$ и $K_7[{Re_3Q_4(CN)_9} {Re_4Q_4}(CN)_9] (Q = S,$ Se) при комнатной температуре реализуется состояние с двумя неспаренными

электронами на формульную единицу, а с понижением температуры до 1,77 К происходит переход комплексов в диамагнитное состояние.

В результате работы получена важная фундаментальная информация о возможности использования ReI₃ как для получения новых типов кластерных комплексов рения, так и для синтеза гетерометаллических кластеров рения с молибденом или вольфрамом. Кроме того, изучено влияние состава и строения кластерного ядра на физико-химические свойства получаемых соединений.

Теоретическая и практическая значимость работы

В ходе работы получена информация о методах синтеза новых кластерных соединений рения исходя из ReI₃. Обнаружено, что использование относительно невысоких температур ($T = 350-550^{\circ}$ C) открывает широкие возможности для получения различных кластерных фаз.

Для новых соединений получены данные о строении и кристаллических структурах, стабильности, окислительно-восстановительных и магнитных свойствах. Кроме того, показана возможность проведения различных реакций модификации внутреннего лигандного окружения (окисление, восстановление, замещение) без разрушения кластерного ядра.

На примере частичного замещения атомов рения в кластерных ядрах $\{Re_4Q_4\}$ (Q = S, Se) на атомы молибдена или вольфрама показано, что такая модификация практически не изменяет геометрию кластерного ядра, но значительно меняет его физико-химические свойства, в первую очередь окислительно-восстановительные и магнитные. Таким образом, становится возможной «настройка» желаемых физико-химических свойств путем варьирования соотношения атомов металла в кластерном ядре.

Впервые получены семиядерные K₈[{Re₃Se₄(CN)₉} {Re₃MSe₄}(CN)₉] (M = Mo, W) и K₇[{Re₃Q₄(CN)₉} {Re₄Q₄}(CN)₉] (Q = S, Se), восьмиядерный K₈[{Re₈Se₈(μ -O)₃}(CN)₁₈] и двенадцатиядерный K₉[{Re₁₂S₁₄}(CN)₂₇] кластерные комплексы рения. Тот факт, что такие типы кластеров являются уникальными и ранее не были описаны не только для рения, но и для других переходных металлов, открывает широкие возможности для дальнейшего тщательного исследования их физико-химических свойств и определения областей возможного применения.

Данные по кристаллическим структурам новых соединений, полученных в рамках настоящего исследования, депонированы в банках структурных данных и являются общедоступными.

Методология и методы исследования

Методология исследования включает в себя разработку и оптимизацию условий синтеза новых кластерных комплексов рения, выделение их в виде индивидуальных соединений, получение монокристаллов, изучение состава, строения и физикохимических свойств. Для достоверной характеризации полученных соединений был использован набор физико-химических методов анализа: элементный анализ (CHNS, ЭДС, ИСП-АЭС), рентгеноструктурный анализ, рентгенофазовый анализ, спектроскопия ядерного магнитного резонанса, инфракрасная спектроскопия, масс-спектрометрия высокого разрешения с распылением в электрическом поле, электронная спектроскопия поглощения. Изучение электрохимических свойств гетерометаллических кластеров проводилось методом циклической вольтамперометрии в водных растворах. Магнитные свойства твердых образцов соединений были изучены методом статической магнитной восприимчивости.

Положения, выносимые на защиту:

методики получения новых четырех-, семи-, восьми- и двенадцатиядерных комплексов рения;

методики получения новых гетерометаллических четырехъядерных
 гетерометаллических рений-молибденовых и рений-вольфрамовых кластерных
 комплексов;

– данные о кристаллических структурах 38 новых кластерных соединений;

– результаты исследования полученных комплексов методами ЭСП, массспектрометрии, ИК- и ЯМР-спектроскопии;

 методики модификации внутренних лигандов в тетраэдрических комплексах рения с элементами 15 группы;

 – результаты изучения электрохимических свойств новых кластерных комплексов, а также потенциалы окислительно-восстановительных переходов, определенные методом ЦВА в водном растворе;

 результаты изучения магнитных свойств четырехъядерных гетерометаллических и семиядерных комплексов.

Личный вклад автора

Автор принимал участие в постановке цели и задач исследования, анализе литературных данных по теме диссертации, выполнении экспериментальных исследований и обработке полученных данных, обсуждении результатов работы и формулировке выводов. Получение всех указанных в экспериментальной части соединений и выращивание монокристаллов для PCA, запись электронных спектров поглощения, регистрация порошковых дифрактограмм и их анализ были выполнены диссертантом. Расшифровка и уточнение данных PCA, а также исследование полученных образцов методом ЦВА проводились при участии соискателя. Подготовка статей и тезисов докладов осуществлялась совместно с научным руководителем и соавторами работ.

Апробация работы

Результаты работы были представлены на международных и российских конференциях: IV Школа-конференция молодых учёных «Неорганические соединения и функциональные материалы» ICFM-2017 (Новосибирск, 2017), Байкальская школа конференция БШКХ-2017 (Иркутск, 2017), XIV Международная конференция «Спектроскопия координационных соединений» (Туапсе, 2017), XXVII Международная Чугаевская конференция по координационной химии (Нижний Новгород, 2017), Франция, Международный семинар «CLUSPOM-2018» (Жиф-сюр-Иветт, 2018), Всероссийский кластер конференций по неорганической химии «InorgChem 2018» (Астрахань, 2018), Международный семинар «International workshop on transition metal clusters IWTMC-VI» (Тюбинген, Германия, 2018) и Международная конференция «XXVII International Conference on Coordination and Bioinorganic Chemistry» (Смоленице, Словакия, 2019), XXI менделеевский съезд по общей и прикладной химии (Санкт-Петербург, 2019), XXVIII Международная Чугаевская конференция по координационной химии (Краснодарский край, с. Ольгинка, 2021).

Публикации

По теме диссертационной работы опубликовано 9 статей в российских и международных журналах, которые входят в перечень индексируемых в международной системе научного цитирования Web of Science. В материалах российских и зарубежных конференций опубликованы тезисы 17 докладов.

Степень достоверности результатов исследований

Достоверность представленных результатов основывается на высоком методическом уровне проведения работы, согласованности экспериментальных данных с данными других исследований. Корректность полученных результатов подтверждается их воспроизводимостью. Признание результатов работы мировым научным сообществом подтверждается наличием публикаций по результатам выполненной работы в рецензируемых журналах различного уровня и высокой оценкой на российских и международных конференциях.

Соответствие специальности 1.4.1. Неорганическая химия

Диссертационная работа соответствует направлениям «Фундаментальные основы получения объектов исследования неорганической химии и материалов на их основе», «Дизайн и синтез новых неорганических соединений и особо чистых веществ с заданными свойствами», «Взаимосвязь между составом, строением и свойствами неорганических соединений. Неорганические наноструктурированные материалы», «Определение надмолекулярного строения синтетических и природных неорганических соединений, включая координационные» и «Процессы комплексообразования и реакционная способность координационных соединений, реакции координированных лигандов» специальности 1.4.1. Неорганическая химия.

Объем и структура работы

Диссертация изложена на 177 страницах, основной текст работы содержит 93 рисунка и 6 таблиц. Работа состоит из введения, литературного обзора, экспериментальной части, описания полученных результатов и их обсуждения, заключения, выводов, списка цитируемой литературы (182 наименования) и приложений на 32 страницах, в которых приведены дополнительные данные по диссертационной работе.

Диссертационная работа выполнена в Федеральном государственном бюджетном учреждении науки Институт неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук (ИНХ СО РАН) в соответствии с Программой фундаментальных научных исследований ИНХ СО РАН по приоритетному направлению V.44. «Фундаментальные основы химии», программа ФНИ СО РАН V.44.4. «Развитие научных основ направленного синтеза новых неорганических и координационных соединений и функциональных материалов на их основе», номер гос. регистрации: 0300-

2014-0010. Кроме того, работа была выполнена в рамках проектов РФФИ (20-33-90086 Аспиранты) и РНФ (18-13-00058). Также результаты исследований были поддержаны премией им. академика А.В. Николаева за успехи в научной работе в 2019-2020, 2020-2021 и 2021-2022 гг. (ИНХ СО РАН), стипендией Правительства Российской Федерации (2019 г.) и стипендией Правительства Новосибирской области (2020 г.).

1. ЛИТЕРАТУРНЫЙ ОБЗОР

На сегодняшний день известно и структурно охарактеризовано более 12000 соединений рения, из которых почти 2000 содержат ковалентную связь Re–Re, то есть являются кластерными. Так, например, одни из простейших, с точки зрения состава, галогениды ReCl₃ и ReBr₃, и халькогениды ReS₂, ReSe₂ и Re₂Te₅, в действительности, являются кластерными соединениями с треугольным (Re₃Cl₉ и Re₃Br₉) [25, 26], ромбическим (Re₄S₈ и Re₄Se₈) [27, 28] и октаэдрическим (Re₆Te₁₅) [29] фрагментами.

Несмотря на то, что кластерные комплексы рения известны уже несколько десятилетий и стали предметом обширных исследований, в настоящее время не угасает интерес к их изучению, что обусловлено уникальными физико-химическими свойствами данных соединений. Например, строение кластерного ядра (несколько ковалентно связанных тяжелых атомов) определяет высокую рентгеновскую контрастность таких соединений. Следовательно, эти комплексы могут быть использованы в качестве рентгеноконтрастных агентов для томографии и ангиографии [3]. Имеется и другой не менее важный биомедицинский аспект в исследовании подобных соединений. Октаэдрические кластеры рения проявляют яркую фосфоресценцию в красной и ближней инфракрасной областях, что представляет большой интерес для клеточной биовизуализации [30]. Кроме того, данные комплексы способны фотосенсибилизировать процесс генерации синглетного кислорода, поэтому могут быть использованы как препараты для процедуры фотодинамической терапии [7]. Среди других интересных особенностей кластерных комплексов можно выделить парамагнетизм [31], а также способность подвергаться обратимым окислительно-восстановительным процессам, протекающим без значительного изменения геометрии кластера [9].

Важной характеристикой высоковалентных кластерных комплексов рения, которая будет упоминаться в данном литературном обзоре, является число кластерных скелетных электронов (КСЭ), то есть электронов, участвующих в образовании связей металл-металл. Для октаэдрических кластеров типа $[\{M_6(\mu_3-X)_8\}L_6]^m$ наиболее характерным является наличие 24 кластерных скелетных электронов, формально отвечающих за образование 12 двухэлектронных двухцентровых связей М–М. Для тетраэдрических комплексов типа $[\{M_4(\mu_3-X)_4\}L_{12}]^n$ число КСЭ равно 12 (6 двухэлектронных двухцентровых связей М–М). Однако известно много примеров, когда кластерные комплексы не подчиняются данной простой модели и формально являются электронодефицитными. Изменение числа КСЭ в

кластерном ядре представляет особый интерес, так как это обычно приводит к изменению оптических, магнитных и других физико-химических свойств.

Следует отметить, что работы, посвящённые изучению кластерных комплексов, в большинстве своем сосредоточены на изучении свойств соединений, содержащих только один тип металла в кластерном ядре. Тем не менее в литературе встречаются примеры комплексов, свойства которых гетерометаллических отличаются OT свойств гомометаллических аналогов. Например, в работе [32] была продемонстрирована возможность введения атомов осмия в кластерное ядро {Re₆}, что приводило к существенному изменению электронного строения и свойств получаемых соединений. Кроме того, в последние годы активно начали изучаться гетерометаллические халькоцианидные октаэдрические кластерные комплексы рения и молибдена состава $[Re_{6-x}Mo_xQ_8(CN)_6]^n$ [14, 15, 33, 34]. Интерес к изучению этих соединений вызван наличием у них перспективных физико-химических свойств, которые нехарактерны для гомометаллических аналогов. Например, октаэдрические кластерные комплексы рения способны к обратимому одноэлектронному окислению из состояния, содержащего 24 КСЭ в состояние с 23 КСЭ [8]. Однако, последовательная замена атомов рения на атомы молибдена в кластерном ядре $\{\text{Re}_{6-x}\text{Mo}_x\text{Se}_8\}$ (x = 1-3) позволяет получить электрохимически активные комплексы с различным содержанием КСЭ, от 21 до 24 [33]. Данное свойство представляет интерес, так как формы, содержащие четное количество электронов, диамагнитны, а формы с нечетным числом КСЭ – парамагнитны. Кроме того, было продемонстрировано, что цианидные группы рений-молибденовых кластеров могут быть замещены на N-донорные лиганды в мягких условиях без разрушения кластерного ядра [15], что также изменяет геометрию и электронную структуру получаемых соединений. Таким образом, замещение атомов металлоостова на атомы другого металла, а также замещение терминальных лигандов является полезным инструментом, позволяющим напрямую влиять на свойства кластерного комплекса.

Данный литературный обзор посвящен главным образом систематизации существующих литературных данных по методам получения кластерных комплексов рения, которые можно в целом разделить на две группы: высокотемпературный ампульный синтез и синтез в растворе. Кроме того, в одном из разделов будут рассмотрены различные способы химической модификации внутреннего лигандного окружения известных в настоящее время кластерных комплексов рения. Финальная часть

литературного обзора будет посвящена методам получения гетерометаллических комплексов переходных металлов, содержащих в своем составе атомы рения.

1.1. Методы получения кластерных соединений рения

1.1.1. Высокотемпературный ампульный синтез

Высокотемпературные реакции получения кластерных комплексов можно разделить на две группы: реакции «самосборки» («self-assembly») и реакции «вырезания» кластерного ядра.

Метод «самосборки», хорошо зарекомендовавший себя в получении кластерных комплексов различных металлов, в том числе и рения, основан на том, что наиболее термодинамически стабильная в условиях синтеза фаза может быть получена из любых исходных реагентов, обеспечивающих требуемую стехиометрию. Поэтому в качестве прекурсоров для синтеза могут быть использованы не только простые вещества, но и их соединения. Типичный синтез кластерных комплексов по данной методике заключается в следующем: исходные соединения загружают в кварцевую или стеклянную ампулу, которую вакуумируют и запаивают. Если при этом есть необходимость в использовании летучих реагентов, ампулу предварительно охлаждают жидким азотом. Запаянную ампулу помещают в печь и нагревают при необходимой температуре в течение определенного времени.

Поскольку многие простые соединения рения являются кластерными, то они используются в так называемых реакциях «вырезания» кластерного ядра. Под данным процессом подразумевается выделение уже готовых кластерных фрагментов из полимерных соединений, при этом происходит замещение терминальных лигандов, в то время как кластерное ядро сохраняется. В сравнении с реакциями «самосборки», реакции «вырезания» часто проходят с более высокими выходами (60-85%) и при более низких температурах.

1.1.1.1. Получение кластерных комплексов из металлического рения

Как уже было описано выше, простые многие по составу галогениды и халькогениды рения на самом деле являются кластерными соединениями. Например, трибромид рения представляет собой треугольный кластер Re₃Br₉ И получается из рения и брома при 600°С [35]. Данный комплекс состоит из треугольников Re₃ с двойными

Рис. 1.1. Строение бромида рения Re₃Br₉

связями Re-Re, которые связаны друг с другом мостиковыми бромидными лигандами с образованием полимерных слоев (Рис. 1.1).

Сульфид и селенид рения ReS_2 и ReSe_2 представляют собой полимерные соединения, содержащие ромбический кластерных фрагмент Re_4Q_6 (Q = S, Se; Puc. 1.2). Данные комплексы были получены взаимодействием стехиометрических количеств простых веществ при температуре 650°C [27, 28].

Рис. 1.2. Слоистая упаковка дихалькогенидов рения на примере ReS₂ и ромбический кластерный фрагмент Re₄S₆

Смешанный халькогенид рения Re₄S₄Te₄ (Рис. 1.3) получается нагреванием смеси Re/S/Te в стехиометрическом соотношении при температуре 900°C [36, 37]. В данном полимерном соединении можно выделить кластерное ядро {Re₄(µ₃-S)₄}, где к каждой грани тетраэдра Re₄ координирован µ₃-мостиковый атом серы, таким образом, его

формулу можно записать как [{Re4(µ3-S)4}Te12/3]. Также в структуре комплекса можно выделить тетраэдры из мостиковых атомов теллура с расстояниями Te–Te 3,486–3,616 Å, которые значительно короче суммы Ван-дер-Ваальсовых радиусов.

Еще одним примером кубанового кластера, образующегося из простых веществ при 550°С является Re₄Te₄(TeBr₂)₄Br₈ [38].

Кроме того, исходя из простых веществ, была получена серия октаэдрических кластерных комплексов рения. (Рис. 1.4) Так, из металлического рения и карбоната щелочного металла при 800– 1400°С, были получены халькогенидные октаэдрические комплексы М₄Re₆Q_x (x = 11, 12, 13, 13,5; М – щелочной металл; Q – S или Se), источником халькогена выступал H₂S или H₂Se [39-44].

Рис. 1.3. Фрагмент структуры смешанного халькогенида рения Re₄S₄Te₄ (атомы S опущены)

Путем взаимодействия металлического рения, халькогена и брома в стехиометрических

количествах в интервале температур от 800 до 1100°С были получены халькобромидные комплексы $Re_6S_4Br_{10}$ [45], $Re_6Se_5Br_8$ [46], $Re_6S_7Br_4$, $Re_6Se_7Br_4$ [47], $Re_6S_8Br_2$ [48] и $Re_6Se_8Br_2$ [49, 50]. В аналогичных условиях при 1100°С был синтезирован халькохлорид $Re_6S_8Cl_2$ [51]. А при нагревании смеси Re/Te при температуре 800°С в течение 14 дней образуется теллурид рения Re_6Te_{15} , формулу которого можно записать следующим образом: [$Re_6(\mu_3-Te)_8$]Te₇]_{∞∞∞} [29]. В данном соединении октаэдрические кластерные ядра Re_6Te_8 связаны лигандами Te₇, образуя полимерную структуру (Рис. 1.5).

Рис. 1.5. Фрагмент структуры полимерного [{Re₆(µ₃-Te)₈}Te₇]_{∞∞∞}

1.1.1.2. Получение кластерных комплексов рения из халькогенидов, включая реакции «вырезания» кластерного ядра

Большая серия кластерных комплексов рения была получена из халькогенидов ReS_2 , ReSe₂ и Re₆Te₁₅. Так, из ReS₂ при 800°C и ReSe₂ при 650°C в расплаве KCN образуются полимерные комплексы K4[{Re₆(µ₃-S)₈}S_{4/2}(CN)₂] и K4[{Re₆(µ₃-Se)₈}(Se₂)_{2/2}(CN)₄] (Рис. 1.6) [52].

Рис. 1.6. Фрагмент структуры халькоцианидных кластерных комплексов K₄[{Re₆(µ₃-S)₈}S_{4/2}(CN)₂] (а) и K₄[{Re₆(µ₃-Se)₈}(Se₂)_{2/2}(CN)₄] (б)

Стоит отметить, что температура в данной системе имеет большое значение. Если реакцию с ReS₂ проводить при 750°С, то образуется двенадцатиядерный кластерный комплекс K₈[{Re₁₂CS₁₇}(CN)₆] [53], в котором два октаэдра Re₆ связаны между собой тремя μ_2 -сульфидными лигандами и одним μ_6 -атомом углерода (Рис. 1.7а). К каждому атому рения, не связанному с внутренним атомом углерода, дополнительно координирован цианидный лиганд. При понижении температуры данной реакции до 650°С и добавлении CsCl получается другой продукт – Cs4[{Re₆S₈}S_{2/2}(CN)₄] (Рис. 1.76) [54].

Рис. 1.7. Строение кластерного комплекса K₈[{Re₁₂CS₁₇}(CN)₆] (a); фрагмент полимерной структуры соединения Cs₄[{Re₆(µ₃-S)₈}S_{2/2}(CN)₄] (б)

В реакции теллурида рения $\text{Re}_6\text{Te}_{15}$ с расплавом цианида калия был получен теллуроцианидный кластерный комплекс $\text{K}_4[\{\text{Re}_6(\mu_3-\text{Te})_8\}(\text{CN})_6]$ [55]. В аналогичных условиях при взаимодействии теллурида рения с расплавом KSCN образуется тиокомплекс $\text{K}_4[\{\text{Re}_6(\mu_3-\text{S})_8\}(\text{CN})_6]$ [56], однако, в данной реакции также происходит частичное замещение лигандов в кластерном ядре и получается соединение состава $\text{K}_4[\{\text{Re}_6(\mu_3-\text{S})_6(\mu_3-\text{Te}_{0,66}\text{S}_{0,34})_2\}(\text{CN})_6]$ [57].

Реакции Re₆Te₁₅ с различными количествами S или Se при температуре 550°C приводят к ступенчатому замещению атомов теллура в кластерном ядре и образованию полимерных соединений {Re₆Te_xQ_{8-x}}Te₇ (Q = S, Se; x = 1–8). При дальнейшем взаимодействии с расплавом цианида калия образуются соли K₄[{Re₆Te_xQ_{8-x}}(CN)₆] (Q = S, Se; x = 1–8) [58-60]. Повышение температуры реакций Re₆Te₁₅ с двумя и более эквивалентами серы до 900°C в результате приводит к получению уже описанного выше комплекса Re₄S₄Te₄ [37].

При нагревании теллурида рения Re₆Te₁₅ с иодом до 400°C в запаянной ампуле было получено соединение состава [{Re₆(µ₃-Te)₈}(TeI₂)₆]I₂, где к атомам рения

координированы лиганды TeI₂ [61]. Аналогичная реакция с бромом при температуре 450°С приводит к образованию теллуробромида рения [{Re₆(µ₃-Te)₈}(Te₆)_{4/4}(TeBr₃)₂] [62], содержащего уникальный нейтральный циклический лиганд Te₆ (Puc. 1.8).

Рис. 1.8. Фрагменты структуры полимерного [{Re₆(µ₃-Te)₈}(Te₆)_{4/4}(TeBr₃)₂] вдоль осей *а* и *с*

1.1.1.3. Получение кластерных комплексов рения из галогенидов, включая реакции конденсации

Несмотря большинство на τо, ЧТО биядерных кластерных комплексов рения получаются В растворах комнатной при есть один пример соединения температуре, $[\operatorname{Re}_{2}(\mu-\eta_{2}-\operatorname{Te}_{2})(\mu-\operatorname{Te}Br)_{2}(\operatorname{Te}Br_{2})_{2}Br_{4}]$ (Рис. 1.9), полученного взаимодействием смеси ReBr₄:Te:TeBr₄:SiBr₄ в мольном соотношении 2:13:1:40. Реакцию проводили в атмосфере аргона в запаянной ампуле при температуре 150°С в течение 2 недель [63].

Рис. 1.9. Строение комплекса [Re₂(µ-η₂-Te)₂(µ-TeBr)₂(TeBr₂)Br₄]

Из тетрагалогенидов рения ReX₄ (X = Cl, Br) также был получен ряд соединений с общей формулой [Re₃(μ_3 -Q)(μ - η_2 -Q₂)₃X₆]X, где Q = S, Se, X = Cl, Br. Реакции проводились при температурах 130-280°C, а в качестве источников халькогена использовались S₂X₂ или SeX₄ (X = Cl, Br) [64].

Развитие химии кубановых кластерных комплексов рения стало возможными благодаря открытию комплексов обшей формулой с $[{Re_4(\mu_3-Q)_4}(TeX_2)_4X_8](Q=S, Se, Te; X=Cl, Br)(Puc.$ 1.10), где по граням тетраэдра Re4 координированы µ3халькогенидные лиганды, а каждый атом рения дополнительно связан с двумя галогенидными и одним TeX₂ лигандами. Синтез теллуробромидного $[\operatorname{Re}_4\operatorname{Te}_4(\operatorname{Te}Br_2)_4\operatorname{Br}_8],$ комплекса полученного ИЗ простых веществ описан выше (см. раздел 1.1.1.1), в

Рис. 1.10. Строение комплекса [{Re₄(µ₃-S)₄}(TeCl₂)₄Cl₈]

то время как теллурохлоридные комплексы были получены из хлорида рения – ReCl₅. Так, в реакции ReCl₅ с элементарным теллуром при температуре 350-400°C получается кластерный комплекс с ядром {Re₄(μ_3 -Te)₄}, а при добавлении серы или селена в реакционную смесь образуются комплексы [{Re₄(μ_3 -Q)₄}(TeCl₂)₄Cl₈], где Q = S или Se [65]. Открытие данных комплексов является ключевым в химии тетраэдрических кластеров рения, так как оказалось, что галогенидные и теллурогалогенидные лиганды легко поддаются замещению как на органические, так и на неорганические молекулы или ионы. Кроме того, благодаря высокому выходу и относительной простоте синтеза данные комплексы возможно получать в большом количестве.

Помимо тетраэдрических кластеров рения, исходя из ReCl₅ была получена большая серия октаэдрических комплексов. Так, в реакции смеси ReCl₅, Re и соответствующего халькогена в интервале температур от 825 до 1100°С происходило образование кластерных комплексов Re₆S₄Cl₁₀, Re₆S₅Cl₈ [66], Re₆Se₅Cl₈, Re₆Se₆Cl₆, Re₆Se₇Cl₄ [47] и Re₆Se₈Cl₂ [67]. В то же время, взаимодействие ReCl₅ с тремя эквивалентами теллура при 450°С, приводило к получению смеси продуктов, отличающихся формой кристаллов – [{Re₆(µ₃-Te)₈}(Te₈Cl₁₈)] и [{Re₆(µ₃-Te)₈}(Te₆)(TeCl₃)₂] [68], которые содержали в своем составе впервые описанные лиганды Te₆, (Te₈Cl₁₈)²⁻ и (TeCl₃)⁻. Также при взаимодействии ReCl₅ с элементарным Те при температурах 500 и 450°С были получены теллурохлоридные кластерные комплексы $[{Re_6(\mu_3-Te)_4(\mu_3-Cl)_4}Cl_6]$ [69] И $[{Re_6(\mu_3-Te)_6(\mu_3-Cl)_2}(TeCl_2)_2Cl_4]$ [70] соответственно.

Среди галогенидов рения стоит выделить трибромид Re₃Br₉, так как многие октаэдрические кластерные комплексы были получены конденсацией этого треугольного

кластерного комплекса. Конденсация – образование кластерных комплексов определенной нуклеарности из кластеров с меньшей нуклеарностью. На рисунке 1.11 в качестве примера схематически показана конденсация трех биядерных и двух треугольных кластеров в октаэдрический.

Рис. 1.11. Конденсация трех биядерных (а) и двух трехъядерных (б) кластерных фрагментов в шестиядерный

Так, в реакции стехиометрических количеств Re_3Br_9 и соответствующего халькогенида свинца или кадмия при 600°C в течение 48 часов были синтезированы кластерные комплексы состава $Re_6Q_8Br_2$ (Q = S, Se) [71]. Преимуществом данной реакции конденсации является то, что она протекает при более низкой температуре, чем соответствующая реакция самосборки из простых веществ (~ 1000°C) [48, 49].

Также с помощью реакции конденсации были получены соединения $\text{Re}_6\text{Q}_4\text{Br}_{10}$ (Q = S, Se, Te), которые можно записать как [{ $\text{Re}_6(\mu_3-\text{Q})_4(\mu_3-\text{Br})_4$ }Br₆] [71-73]. Кроме того, взаимодействием Re_3Br_9 с Li₂Te (1:3) или с Te и KCN (1:4:4) при температуре 550°C в течение 48 часов были синтезированы анионные кластеры [{ $\text{Re}_6(\mu_3-\text{Te})_6(\mu_3-\text{Br})_2$ }Br₆]^{2–} и [{ $\text{Re}_6(\mu_3-\text{Te})_5(\mu_3-\text{Br})_3$ }Br₆]⁻, выделенные в виде солей [NPr₄]₂[{ $\text{Re}_6(\mu_3-\text{Te})_6(\mu_3-\text{Br})_2$ }Br₆] и [PPh₄][{ $\text{Re}_6(\mu_3-\text{Te})_5(\mu_3-\text{Br})_3$ }Br₆] соответственно [74].

Одним из наиболее интересных примеров конденсации кластерных фрагментов является взаимодействие Re₃Br₉ с PbSe в расплаве KBr при температуре 550°C. В результате получается первый и до настоящего времени единственный девятиядерный

кластер рения [{Re₉(μ 4-Se)₃(μ 3-Se)₈}Br₆]²⁻ [75]. В данном соединении два октаэдра Re₆ имеют общую грань и формируют ядро {Re₉(μ 4-Se)₃(μ 3-Se)₈}⁴⁺ (Рис. 1.12).

Еще одним примером октаэдрического комплекса рения, полученным из трибромида, является $[{Re_6(\mu_3-Te)_8}(TeBr_2)_6]Br_2$. Данное соединение содержит в своем составе лиганды TeBr₂ и образуется в реакции Re₃Br₉ с Te (в соотношении 2:5) в запаянной ампуле при температуре 450°C [70].

Рис. 1.12. Строение кластерного аниона [{Re₉(µ₄-Se)₃(µ₃-Se)₈}Br₆]²⁻

1.1.1.4. Получение кластерных комплексов рения из халькогалогенидов методом «вырезания» кластерного ядра

Халькогалогениды рения $\text{Re}_6\text{Q}_8\text{Br}_2$ (Q = S, Se) являются кластерными соединениями и широко используются для получения новых комплексов с помощью реакции «вырезания» кластерного ядра. Так, данным методом в реакции полимеров $\text{Re}_6\text{S}_8\text{Br}_2$ и $\text{Re}_6\text{Se}_8\text{Br}_2$ с расплавом цианида калия при температуре 650°C были получены тио- и селеноцианидные кластерные комплексы $\text{K}_4[\{\text{Re}_6(\mu_3-\text{Q})_8\}(\text{CN})_6]$ (Q = S, Se, Puc. 1.13) [76, 77].

Рис. 1.13. Схема вырезания кластерного ядра из полимера Re₆S₈Br₂ в расплаве КСN с образованием анионного комплекса [{Re₆S₈}(CN)₆]⁴⁻

Кроме того, в результате деполимеризации соединений $Re_6Q_8Br_2$ (Q = S, Se) в расплаве КОН образуются кластерные комплексы $K_4[\{Re_6(\mu_3-Q)_8\}(OH)_6]\cdot 8H_2O$. Температура реакции составляла 280°C для $Re_6S_8Br_2$ и 200°C для $Re_6Se_8Br_2$ [78]. В аналогичных условиях в расплаве CsOH образуются цезиевые соли $Cs_4[\{Re_6(\mu_3-Q)_8\}(OH)_6]\cdot nH_2O$ (Q = S, n = 6; Q = Se, n = 8) [79].

1.1.2. Синтез в растворе

Вторым методом получения кластерных комплексов рения является синтез в водных или органических растворах. По большей части, этот метод применяется для модификации кластерных комплексов, которые перед этим были синтезированы путем высокотемпературного ампульного синтеза. Для получения кластерных комплексов из простых соединений данный способ используется значительно реже, но, безусловно, существует ряд соединений, для которых разработаны методики, позволяющие получать их в растворе с хорошими выходами.

1.1.2.1. Биядерные кластерные комплексы рения

Первые примеры кластерных комплексов рения в водных растворах синтезировал Коттон в далеком 1964 году. Соединения, содержащие ионы $[\text{Re}_2X_8]^{2-}$, были получены восстановлением ReO_4^- в водной HCl или HBr [80].

Кроме того, в литературе встречается биядерного пример неорганического халькогенидного кластерного комплекса рения $(NH_4)_2[Re_2(\mu-S)_2(\mu-S_3)_2(S_4)_2] \cdot 6H_2O$ (Рис. 1.14), который был получен взаимодействием раствора полисульфида аммония (NH₄)₂S_x с перренатом аммония NH₄ReO₄ в водном растворе при комнатной температуре [81]. Интересной особенностью данного соединения является

Рис. 1.14. Строение кластерного аниона [$\text{Re}_2(\mu\text{-}S)_2(\mu\text{-}S_3)_2(S_4)_2$]^{2–}

наличие мостиковых трисульфидных лигандов S_3^{2-} и тетрасульфидных лигандов S_4^{2-} .

Помимо этого, ранее были описаны биядерные кластерные комплексы рения с различными органическими лигандами. В качестве примеров можно привести (Bu₄N)[Re₂(µ-S₂)(µ-S₂)(µ-S₂CO-*i*-Bu)(S₂CO-*i*-Bu)₂] и [Re₂(µ-S)₂(S₂CO-*n*-Bu)₄], которые

были синтезированы в растворах при взаимодействии NH₄ReS₄ с [(*i*-Bu)OCS₂]₂ и ReCl₅ с K[S₂CO-*n*-Bu] соответственно [82].

1.1.2.2. Трехъядерные кластерные комплексы рения

Химия трёхъядерных кластерных комплексов рения с халькогенидными мостиковыми лигандами началась с работ группы профессора С.В. Волкова в 1990 году. Так, в реакции ReOCl₄ с элементарной серой в растворе дитиодихлорида (S₂Cl₂) при температуре 120°C был получен треугольный комплекс Re₃S₇Cl₇ [83]. Аналогичной реакцией Re₂O₇ и S₂X₂ (X = Cl, Br) с раствором AlCl₃ при температуре 100°C были получены соединения Re₃S₇Cl₆AlCl₄ и Re₃S₇Br₇ при 200°C [84]. Тиобромид также может быть получен напрямую из сульфида рения(VII) и брома при нагревании до 200°C [84].

Рассмотрим строение тиогалогенидов $Re_3S_7X_7$ (X = Cl, Br) на примере Re₃S₇Br₇. Его можно представить в виде треугольника Re₃, где к каждому ребру μ - η^2 - S_2^{2-} . дисульфидный лиганд координирован Дополнительно каждый атом рения связан с µ3мостиковым S²⁻ лигандом и двумя терминальными бромид ионами, образуя кластерный катион $[\text{Re}_3(\mu_3-\text{S})(\mu-\eta^2-\text{S}_2)_3\text{Br}_6]^+$ (Рис. 1.15). В роли аниона выступает один ион Br⁻, лежащий на оси третьего

Рис. 1.15. Строение кластера [Re₃(µ₃-S)(µ-η₂-S₂)₃Br₆]Br

порядка на противоположной стороне от µ₃-S²⁻ лиганда. Между бромид-ионом и тремя атомами серы лигандов µ-η²-S₂²⁻ наблюдаются Ван-дер-Ваальсовы взаимодействия.

В 1997 году было обнаружено, что треугольные халькогалогениды рения способны образовывать комплексы с фосфиновыми лигандами. Так, путем взаимодействия Re₃Se₇Cl₇ с триэтилфосфином в бензоле был получен кластерный комплекс (PEt₃H)[Re₃(μ_3 -S)(μ -S)₃Cl₆(PEt₃)₃] с ядром {Re₃(μ_3 -S)(μ -S)₃} (Puc. 1.16a) [85]. В дальнейшем было показано, что полученное соединение со временем окисляется на воздухе, и образуется комплекс (Et₄N)[Re₃(μ_3 -S)(μ -SO₂)(μ -S)₂Cl₆(PEt₃)₃] (Puc. 1.16б), при этом один из μ -S^{2–} лигандов превращается в μ -SO₂^{2–} [86].

Рис. 1.16. Строение анионов [Re₃(µ₃-S)(µ-S)₃Cl₆(PEt₃)₃]⁻ (а) и [Re₃(µ₃-S)(µ-SO₂)(µ-S)₂Cl₆(PEt₃)₃]⁻ (б)

Такое было же поведение продемонстрировано И для комплекса $[{Re_3(\mu_3-S)(\mu-S)_3}Cl_6(PMe_2Ph)_3]^-,$ который переходит В окисленную форму $[{Re_3(\mu_3-S)(\mu-SO_2)(\mu-S)_2}Cl_6(PMe_2Ph)_3]^$ при взаимодействии с кислородом воздуха [87]. Также было показано, что соединения с ядром $\{\text{Re}_{3}(\mu_{3}-S)(\mu-S)_{3}\}$ могут участвовать В образовании гетерометаллических кубановых кластеров с атомами кобальта, никеля и меди (Рис. 1.17): µ₃-S²⁻ лиганды от треугольных кластеров координируются по µ3-типу к атому *d*-металла с образованием комплексов с металлоостовом $\{\text{Re}_3\text{M}\}$ (M = Co, Ni и Cu) [88-90].

В зависимости от условий синтеза были треугольные кластерные выделены отличающиеся комплексы рения, количеством кластерных скелетных электронов. Так, В отличие OT вышеописанных кластеров с фосфиновыми лигандами, содержащих 8 КСЭ, при Re₃Se₇Cl₇ взаимодействии c бромидом

Рис. 1.17. Строение гетерометаллических кубановых кластеров на примере [{Re₃(CuCl)(µ₃-S)(µ-S)₃}Cl₆(PMe₂Ph)₃]⁻

Рис. 1.18. Строение комплекса [{Re₃(µ₃-S)(µ-S)₃}(dppe)₃Br₃]⁺

1-этил-3-метилимидазолия (ImBr) и AlBr₃ в ацетонитриле образуется соединение с девятью бромидными лигандами Im₃[{Re₃(μ_3 -S)(μ -S)₃}Br₉]Br, содержащее 6 КСЭ [91]. В то же время в реакции Re₃S₇Br₇ с 1,2-бис(дифенилфосфино)этаном (dppe) в ацетонитриле происходит образование комплекса [{Re₃(μ_3 -S)(μ -S)₃}(dppe)₃Br₃]⁺ с 9 КСЭ (Рис. 1.18) [92]. При дальнейшем взаимодействии с избытком KSCN, бромидные лиганды в полученном соединении замещаются на роданидные с образованием [{Re₃(μ_3 -S)(μ -S)₃}(dppe)₃(NCS)₃]⁺ [93].

Большой интерес в химии рения представляют треугольные кластеры {Re₃} с двойной связью Re–Re, а именно, тригалогениды Re₃X₉ (X = Cl, Br, I) и их производные. На самом начальном этапе становления кластерной химии эти соединения сыграли важную роль в формировании взглядов на кратные связи металл–металл и было показано, что они могут принимать участие во множестве химических превращений. Так, при взаимодействии галогенидов рения Re₃X₉ (X = Cl, Br), с различными O, P, N-донорными и алкильными лигандами, была получена большая серия треугольных кластеров [{Re₃(μ -X)₃}X₆L₃]ⁿ. Данные результаты подробно изложены в монографии Коттона и Уолтона [94].

Также было показано, что путем взаимодействия Re_3Cl_9 c $(Bu_4N)_2Q$ В ацетоне при комнатной температуре в течение 12 часов можно ввести в кластерное ядро µ3-мостиковый атом халькогена с образованием хлоридных комплексов $[{Re_3(\mu_3-Q)(\mu-Cl)_3}Cl_6] (Q = S, Se, Te) (Puc. 1.19) [95].$ кластера [$\{Re_3(\mu_3-S)(\mu-Cl)_3\}Cl_6$] Для В качестве источника серы также может быть использован $(Bu_4N)_2MoS_4.$

Рис. 1.19. Строение кластерного комплекса [Re₃(µ₃-S)(µ-Cl)₃Cl₆]

Что касается химии иодида рения, то до недавнего времени она была ограничена синтезом [16] и структурной характеризацией [17] самого Re_3I_9 (Рис. 1.20) и смешаннолигандных комплексов [$\{\text{Re}_3\text{I}_3\}\text{Cl}_{9-x}(\text{H}_2\text{O})_x$]^{(3-x)-} [18, 19]. Кроме того, известен кластерный комплекс с ядром $\{\text{Re}_3\text{I}_3\}^n$ и изоцианидными терминальными лигандами [20], однако структурная информация об этом соединении отсутствует.

Рис. 1.20. Строение полимерного иодида рения Re₃I₉

В 2021 химия треугольных кластерных иодидов рения начала активно развиваться. Так, при взаимодействии Re₃I₉ или Re₃Br₉ с водным раствором цианида натрия было проведено замещение внешних галогенидных лигандов на цианид ионы с образованием комплексов $[{Re_3X_3}(CN)_9]^{5-}$ (X = Br, I; Puc. 1.21) и восстановлением металлокластера Re₃⁹⁺ (12 КСЭ) до Re₃⁷⁺ (14 КСЭ) [96]. Дальнейшее окисление полученных комплексов водным раствором Н2О2

Рис. 1.21. Строение кластерных анионов [{Re₃X₃}(CN)₉]^{4-/5-}

привело к образованию соединений $[{Re_3X_3}(CN)_9]^{4-}$ (X = Br, I) с зарядом металлокластера 8+ (13 КСЭ).

Среди результатов, полученных в 2021 году, также можно выделить взаимодействие Re₃I₉ с N-гетероциклическими карбеном 1,3-бис(2,4,6-триметилфенил)имидазол-2илиденом (IMes) в ТГФ при 60°С в инертной атмосфере с образованием 13-электронного парамагнитного кластерного комплекса [Re₃I₈(IMes)₂] (Рис. 1.22) [97]. Реакция сопровождается восстановлением металлокластера {Re₃}⁹⁺ (12 КСЭ) до {Re₃}⁸⁺ (13 КСЭ).

Рис. 1.22. Строение комплекса [Re₃I₈(IMes)₂]

Кроме того, был разработан новый подход к получению кристаллического Re₃I₉ с количественным выходом путем гидротермальной реакции NaReO4 с концентрированной кислотой НІ при 200°С [98]. Было установлено, что реакция Re₃I₉ с концентрированной кислотой HBr при 200°С приводит к полному замещению иодидных лигандов на бромидные с сохранением кластерного ядра, а при добавлении в реакционную смесь кристаллизуется пиридина пиридиниевая $(PyH)_2[Re_3Br_{11}(H_2O)] \cdot 4H_2O.$ соль Попытка дальнейшего восстановления рения путем

Рис. 1.23. Строение комплекса [Re₃Br₉(PO₄H)]²⁻

взаимодействия Re₃I₉ с концентрированной HBr в присутствии H₃PO₄ привела к образованию фосфатного комплекса [Re₃Br₉(PO₄H)]^{2–} (Puc. 1.23), который был выделен в виде солей (PyH)₂[Re₃Br₉(PO₄H)]·H₂O и (Et₄N)₂[Re₃Br₉(PO₄H)]·2H₂O.

1.1.2.3. Четырехъядерные кластерные комплексы рения

Практически все известные на настоящее время четырехъядерные кластерные комплексы рения имеют тетраэдрическое строение металлоостова. Однако, в 1994 году было показано, что в реакции Re_2S_7 с водным раствором цианида калия при 85°C в течение 24 часов происходит образование смеси двух комплексов: $K_4[Re_4(\mu_3-S)_4(CN)_{12}]$ ·6H₂O и $K_8[{Re_4(\mu_3-S)_2(\mu-SO_2)_4}(CN)_{10}]$ ·5H₂O (Рис. 1.24) [99]. Первый комплекс имеет типичное

строение, характерное для кубановых кластеров, в то время как второй – содержит ромбическое кластерное ядро {Re₄(µ₃-S)₂(µ-SO₂)₄} и является единственным молекулярным комплексом рения с такой геометрией.

Рис. 1.24. Строение кластерного аниона [{Re₄(µ₃-S)₂(µ-SO₂)₄}(CN)₁₀]⁸⁻ (слева) и [Re₄(µ₃-S)₄(CN)₁₂]⁴⁻ (справа)

Спустя несколько лет для тиоцианидного комплекса $[\text{Re}_4(\mu_3-\text{S})_4(\text{CN})_{12}]^{4-}$ была разработана другая методика получения, заключающаяся во взаимодействии трехъядерного комплекса $[\text{Re}_3(\mu_3-\text{S})(\mu-\eta_2-\text{S}_2)_3\text{Br}_6]$ Вг с водным раствором цианида калия при комнатной температуре в течение одной недели. При добавлении в реакционную смесь хлорида цезия была выделена цезий-калиевая соль $\text{Cs}_2\text{K}_2[\text{Re}_4(\mu_3-\text{S})_4(\text{CN})_{12}]\cdot 2\text{H}_2\text{O}$ [100].

Среди реакций получения кубановых кластеров рения в водном растворе также можно выделить синтез кластерных комплексов, содержащих в своем составе S_3^{2-} : мостиковые трисульфидные лиганды $(NH_4)_4[Re_4(\mu_3-S)_4](\mu-S_3)_6]\cdot 0,3NH_4Cl\cdot 0,7H_2O$ [101] И $(NH_4)_4[Re_4(\mu_3-S)_4](\mu-S_3)_6] \cdot 2H_2O$ [102] (Рис. 1.25). Данные соединения были получены исходя ИЗ молекулярного комплекса NH₄ReO₄ и полисульфида натрия Na₂S_x в присутствии NH₂OH.

Рис. 1.25. Строение комплекса [{Re4(µ3-S)4}(µ-S3)6]⁴⁻

Как уже говорилось выше, важным моментом в химии тетраэдрических кластерных комплексов рения было получение теллурогалогенидных комплексов, так как большинство дальнейших исследований тетраэдрических кластеров проводились именно

исходя из данных соединений. Так, например, реакция с 10% водным раствором полисульфида аммония (NH₄)₂S_x (x ~ 1,8) привела к образованию кластерных комплексов с полисульфидными лигандами S₃²⁻ и S₄²⁻ – [Me₄N]₅[Me₂NH₂]₃[Re₄(μ ₃-Se)₄(μ -S₃)₄(μ -S₄)₂]₂·2,25H₂O и [NH₄]₄[Re₄(μ ₃-Te)₄(μ -S₃)₄(μ -S₄)₂]·8H₂O [103].

При кипячении водного раствора [{Re₄(μ_3 -Q)₄}(TeCl₂)₄Cl₈] (Q = Se, Te) и KCN были синтезированы комплексы K₄[{Re₄(μ_3 -Se)₄}(CN)₁₂]·6H₂O [104] и K₄[{Re₄(μ_3 -Te)₄}(CN)₁₂]·5H₂O [105]. А добавление к теллуридному кластеру хлорида цезия, привело к образованию цезиевой соли Cs₄[{Re₄(μ_3 -Te)₄}(CN)₁₂]·4H₂O [106]. Также было показано, что в 6M растворе HCl в присутствии CsCl терминальные лиганды TeCl₂ замещаются на анионы Cl⁻, в результате чего были выделены кислые соли Cs₃H[Re₄(μ_3 -Q)₄Cl₁₂]·3,33H₂O (Q = Se, Te) [107].

Помимо реакций в водных растворах в литературе можно встретить примеры реакций [{Re₄(μ_3 -Q)_4}(TeCl₂)₄Cl₈] в органических растворителях, где лигандом может являться как сам растворитель, так и другой нуклеофильный агент. Взаимодействие [{Re₄(μ_3 -Q)_4}(TeCl₂)₄Cl₈] (Q = S, Se) с CH₃CN в присутствии Pr₄NCl приводит к замещению терминальных TeCl₂ на ацетамидный анионный лиганд (CH₃C(O)NH)⁻ [108]. Интересно заметить, что ацетамид образуется при гидролизе ацетонитрила на металлическом центре. Еще одним примером замещения лигандов в кубановых кластерах является взаимодействие [{Re₄(μ_3 -Te)_4}(TeCl₂)₄Cl₈] с DMF, в результате чего получается соединение состава [{Re₄(μ_3 -Te)_4}(DMF)₄Cl₈]·DMF [109]. Кроме того, при добавлении к [{Re₄(μ_3 -Q)₄}(TeCl₂)₄Cl₈] избытка PMe₂Ph в CH₂Cl₂ был получены комплексы с лигандами PMe₂Ph [110].

Вышеописанные реакции замещения лигандов TeCl₂ в [{Re₄(µ₃-Q)₄}(TeCl₂)₄Cl₈] в растворах показаны на рисунке 1.26.

Рис. 1.26. Реакции замещения терминальных лигандов в [{Re₄(µ₃-Q)₄}(TeCl₂)₄Cl₈] в водных и органических растворах

1.1.2.4. Шестиядерные кластерные комплексы рения

До недавнего времени не было работ по получению шестиядерных кластерных комплексов рения из более простых соединений в растворе. Были описаны лишь методики химической модификации (замещения внутренних или терминальных лигандов) комплексов, предварительно полученных путем высокотемпературного ампульного синтеза.

Развитие химии, посвященной изучению реакций замещения терминальных лигандов в октаэдрических кластерных комплексах рения, началось с работ научной группы профессора Холма [111, 112]. Было показано, что в зависимости от условий реакций и соотношения исходных соединений происходит ступенчатое замещение терминальных галогенидных лигандов в комплексах [{Re₆(μ ₃-Se)₈}I₆]³⁻ и [{Re₆(μ ₃-S)₈}Br₆]³⁻ на триэтилфосфин (PEt₃). Полученные результаты можно представить в виде схем, показанных на рисунках 1.27 и 1.28.

Рис. 1.27. Реакции замещения терминальных иодидных лигандов в [Re₆Se₈I₆]³⁻ на PEt₃

Рис. 1.28. Реакции замещения терминальных бромидных лигандов в [Re₆S₈Br₆]³⁻ на PEt₃

В 2005 году были получены гексагидроксо- кластерные комплексы состава $K_4[{Re_6Q_8}(OH)_6]$ (Q = S, Se) [78]. Было показано, что данные соединения растворимы в
воде, а гидроксидные лиганды являются удобными уходящими группами, что открыло возможность проводить реакции лигандного замещения в водных растворах с различными органическими и неорганическими веществами. Следует отметить, что количество публикаций, посвященных лигандному обмену в гидроксокомплексах рения велико и постоянно растет, поэтому мы рассмотрим лишь несколько примеров. Так, в реакции $K_4[{Re_6S_8}(OH)_6]$ с ТВР в водном растворе получается комплекс $[{Re_6S_8}(TBP)_4(OH)_2]$ (Рис. 1.29) [113].

Рис. 1.29. Строение кластерного комплекса [$\{Re_6S_8\}(TBP)_4(OH)_2$]

При взаимодейсвии комплексов K₄[{Re₆Q₈}(OH)₆] (Q = S, Se) с различными неорганическими или органическими кислотами происходило замещение лигандов OH⁻ на соответствующие кислотные остатки. Так, при кипячении комплексов в концентрированных хлористоводородной или бромистоводородной кислотах в течение 10 минут происходило замещение гидроксогрупп на хлорид или бромид ионы [78]. Аналогично протекают реакции тиокомплекса K₄[{Re₆S₈}(OH)₆] с водными растворами муравьиной или уксусной кислот. При этом получаются гексазамещенные комплексы [{Re₆S₈}(HCOO)₆]⁴⁻ [114] и [{Re₆S₈}(CH₃COO)₆]⁴⁻ [115].

Также было показано, что реакции с разными псевдогалогенидами протекают поразному. В частности, при добавлении к водному раствору K4[{Re₆Se₈}(OH)₆] азида натрия происходит замещение всех гидроксолигандов и образуется комплекс K4[{Re₆Se₈}(N₃)₆] [116]. В то же время, реакции K4[{Re₆Q₈}(OH)₆] (Q = S, Se) с водным раствором KCN приводили только к образованию продуктов неполного замещения: транс-K4[{Re₆S₈}(CN)₂(OH)₄] [117] и транс-K4[{Re₆Se₈}(CN)₄(OH)₂] (Рис. 1.30).

Рис. 1.30. Строение комплексов транс-[{Re₆S₈}(CN)₂(OH)₄]⁴⁻ (слева) и транс-[{Re₆Se₈}(CN)₄(OH)₂]⁴⁻ (справа)

Единственным примером получения октаэдрического кластерного комплекса рения в растворе исходя из соединения с более низкой нуклеарностью является взаимодействие ReI₃ с 3-метилпиридином и водой в мягких условиях. При этом происходит образование комплекса состава [$\{Re_6(\mu-O)_{12}\}(3-Mepy)_6$]BPh₄ [24]. Следует отметить, что данное соединение было получено в 2014 году и является первым и пока единственным октаэдрическим кластерным комплексом рения, содержащим в ядре двенадцать μ_2 -мостиковых лигандов (Рис. 1.31).

Рис. 1.31. Строение кластера [{Re₆(µ-O)₁₂}(3-Mepy)₆]⁺

1.2. Модификация внутреннего лигандного окружения кластерных комплексов рения

1.2.1. Октаэдрические комплексы

Наиболее подробно исследовано замещение внутренних хлоридных лигандов в кластерах $[{Re_6Q_5Cl_3}Cl_6]^-$ (Q = S, Se). При перекристаллизации комплекса К[{Re₆Se₅Cl₃}Cl₆] из обводненного этанола происходит замещение двух хлоридных лигандов на гидроксогруппы с образованием соединения К[{Re₆Se₅Cl(OH)₂}Cl₆]·H₂O Соли (Pr₄N)₂[{Re₆Se₆Cl₂}Cl₆] и (Bu₄N)₂[{Re₆Se₆Cl₂}Cl₆] [118]. были получены посредством взаимодействия Pr₄N[{Re₆Se₅Cl₃}Cl₆] и Bu₄N[{Re₆Se₅Cl₃}Cl₆] с Li₂Se в тетрагидрофуране при комнатной температуре [119]. В данной работе также было показано, что при нагревании до 60°С соединения Re₆Se₄Cl₁₀, суспендированного во влажном ДМФА, происходит замещение двух атомов хлора в кластерном ядре на атомы кислорода и образуется комплекс [$\{Re_6Se_4O_2Cl_2\}Cl_6\}^{2-}$. Интересно отметить, что было выделено два изомера, отличающихся взаимным расположением внутренних лигандов. В α-изомере атомы кислорода располагаются на противоположных концах диагонали куба Se₄O₂Cl₂, в то время как в β -изомере атомы кислорода находятся в транс-положениях грани куба O₂Cl₂ (Рис. 1.32).

Рис. 1.32. Строение α- (слева) и β-изомера (справа) комплекса [{ $Re_6Se_4O_2Cl_2$ }Cl_6]²⁻

В работе [120] было продемонстрировано, что реакция бис(триметилсилил)оксида $(Me_3)_3Si)_2O$ или бис(триметилсилил)халькогенидов ($(Me_3)_3Si)_2E$ (E = S, Se или Te) с $Bu_4N[\{Re_6Q_5Cl_3\}Cl_6\}$ (Q = S, Se) приводит к замещению одного хлоридного лиганда в кластерном ядре. Реакция протекает при комнатной температуре в ацетонитриле в

атмосфере аргона, в результате чего с высоким выходом получаются тетрабутиламмонийные соли $Bu_4N[{Re_6Q_5ECl_2}Cl_6]$ (E = O, S, Se, Te). Схему реакции можно представить следующим образом:

$$[\{\text{Re}_{6}\text{Q}_{5}\text{Cl}_{3}\}\text{Cl}_{6}]^{-} + ((\text{Me}_{3})_{3}\text{Si})_{2}\text{E} \rightarrow [\{\text{Re}_{6}\text{Q}_{5}\text{E}\text{Cl}_{2}\}\text{Cl}_{6}]^{2-} + (\text{Me}_{3})_{3}\text{Si}\text{Cl}_{6}]^{2-} + (\text{Me}_{3})_{3}\text{Si}\text{Cl}_{6}]^{2-} + (\text{Me}_{3})_{3}\text{Si}\text{Cl}_{6}^{2-} + (\text{Me}_{3})_{3}\text{Si}\text{Cl}_{7}^{2-} + (\text{Me}_{3})_{3} + (\text{Me}_{3})_{3}\text{Si}\text{Cl}_{7}^{2-} + (\text{Me}_{3})_{3} +$$

Таким образом, в ходе работы была получена представительная серия смешаннолигандных анионных гексарениевых кластерных комплексов, а также было показано, что при замещении одного внутреннего хлоридного лиганда на халькоген, октаэдрическое ядро Re₆ не искажается, в то время как в комплексе [{Re₆S₅OCl₂}Cl₆]⁻ происходит сильное сжатие грани октаэдра, к которой координирован атом кислорода.

В дальнейшем полученная серия смешаннолигандных комплексов была значительно расширена. Так, используя аналогичный подход, исходя из Bu₄N[{Re₆Q₅Cl₃}Cl₆] (Q = S, Se) и соответствующих производных бис(триметилсилил)амина ((Me₃)₃Si)₂NR (R = H, метил или бензил) были получены μ_3 -имидофункционализированные комплексы [{Re₆Q₅(NR)Cl₂}Cl₆]²⁻ (Q = S, Se; R = SiMe₃, метил или бензил) [121]. Триметилсилильная группа в соединениях [{Re₆Q₅(NSiMe₃)Cl₂}Cl₆]²⁻ может быть удалена при обработке реакционной смеси Bu₄ⁿNF с образованием [{Re₆Q₅(NH)Cl₂}Cl₆]²⁻. Кроме того, атом азота в этих кластерах сохраняет свои нуклеофильные свойства и может быть проалкилирован бензилхлоридом в присутствии триэтиламина, при этом образуются комплексы [{Re₆Q₅(NBn)Cl₂}Cl₆]²⁻.

В гексасульфидных кластерах Ca[{Re₆S₆Cl₂}Cl₆] возможно замещение хлоридных лигандов на O^{2–}, S^{2–}, NH^{2–}, P^{3–} или As^{3–} под действием бис(триметилсилил)-производных E(SiMe₃)₂ (E = O, S, NH, PhAs, PSiMe₃) в смеси тетрагидрофурана с ацетонитрилом при комнатной температуре. В данных реакциях наряду с замещением внутренних лигандов, происходит также замещение внешних лигандов, и с высокими выходами (> 60%) получаются кластерные катионные комплексы [{Re₆S₆X₂}(PPr₃)₆]²⁺ (X = NH, O или S) или нейтральные соединения [{Re₆S₆X₂}(PPr₃)₆] (X = P или As) [122].

Реакция тиобромида [{Re₆S₄Br₄}Br₆] с расплавом KSCN при 550 °C приводит к замещению трех атомов брома в кластерном ядре на серу с образованием калиевой соли K₃[{Re₆S₇Br}Br₆] [123]. Спустя несколько лет было показано, что при взаимодействии

цезиевых солей Cs₃[Re₆Q₇Br)Br₆] (Q = S, Se) с 3,5-диметилпиразолом при 200 °C происходит не только замещение всех внешних бромидных лигандов на молекулы 3,5-Me₂PzH, но и замещение μ_3 -Br лиганда в кластерном ядре на кислород [124]. Продуктами реакции являются комплексы состава [{Re₆Q₇O}(3,5-Me₂PzH)₆]Br₂·3,5-Me₂PzH (Q = S или Se). Таким образом, реакция сопровождается изменением как внешнего, так и внутреннего лигандного окружения металлокластера.

При взаимодействии полимера $Re_6Se_8Br_2$ с расплавом КОН при 280°С, наряду с «вырезанием» кластерного ядра с образованием анионного гидроксокомплекса, происходит замещение четырех атомов селена в ядре $\{Re_6Se_8\}^{2+}$ на кислород. Путем добавления к водному раствору продуктов реакции смеси CsCl/HCl была выделена и охарактеризована соль состава $Cs_{11}(H_3O)[\{Re_6Se_4O_4\}Cl_6]_3\cdot 4H_2O$ [125]. Полученный комплекс содержит кластерное ядро $\{Re_6Se_4O_4\}$, в котором атомы селена и кислорода занимают строго определенное положение: все 4 позиции одной грани куба Se4O4 заняты исключительно атомами Se, а 4 атома O лежат на противоположной стороне. Кроме того, с помощью квантово-химических расчетов в рамках теории функционала плотности (DFT) было показано, что полученный изомер является наиболее стабильным среди шести возможных.

Мостиковые халькогенидные лиганды являются менее подвижными и замещаются в более жестких условиях. В цикле работ было исследовано ступенчатое замещение теллура в кластерном ядре в соединении Re₆Te₁₅ на серу и селен при температуре 550-600°C [58-60]. Так, высокотемпературные реакции полимера Re₆Te₁₅ с различными количествами S или Se приводили к образованию фаз переменного состава – твердых растворов замещения типа [Re₆Te_xQ_{8-x}]Te₇, где Q = S, Se; $0 \le x \le 8$. Полученные соединения были вовлечены в реакции деполимеризации с расплавом цианида калия. В результате были выделены водорастворимые соли K₄[{Re₆Te_xQ_{8-x}}(CN)₆] (Q = S, Se; $0 \le x \le 8$), сохраняющие кластерное ядро исходных соединений [58]. Методом ЯМР спектроскопии на ядрах ⁷⁷Se и ¹²⁵Te были исследованы водные растворы солей [59]. Для образцов всех составов были получены очень сложные ЯМР-спектры, которые были интерпретированы в предположении, что сложный спектр является суммой нескольких более простых. Таким образом, было показано, что каждый исследованный образец представляет собой смесь нескольких химических форм с разной степенью замещения теллура в кластерном ядре в различных соотношениях и включает разные возможные

композиции от $[{Re_6Te_8}(CN)_6]^{4-}$ до $[{Re_6Se_8}(CN)_6]^{4-}$ и их геометрические изомеры (Рис. 1.33).

Рис. 1.33. Определенный с помощью ЯМР-спектроскопии вклад различных форм кластерных анионов [{Re₆Te_xSe_{8-x}}(CN)₆]⁴⁻ (х в формуле соответствует числовому значению на оси абсцисс) в образцах, выделенных из реакций "Re₆Te₁₅ + nSe + 6KCN"

Цианидные комплексы [{ $Re_6Te_xQ_{8-x}$ }(CN)_6]⁴⁻ (Q = S, Se) могут быть получены и напрямую из Re_6Te_{15} в реакции с KSCN или смесью KCN/Se. Так были синтезированы соединения с кластерными ядрами { Re_6Te_7Se }, { $Re_6Te_4Se_4$ }, { Re_6TeSe_7 }, { $Re_6S_6(Te_{0,66}S_{0,34})_2$ } [57, 60]. Последнее является смесью двух комплексов с ядрами { Re_6S_8 } и { $Re_6S_6Te_2$ }. Также было изучено взаимодействие теллурида рения с хлором и бромом. В реакции с бромом образуется комплекс [{ $Re_6Te_4Br_4$ }Br_6] [126, 127]. В то же время иод, как более мягкий окислитель, превращает анион Te_7^{2-} в лиганды TeI_2 , не затрагивая кластерного ядра, с образованием [{ Re_6Te_8 }(TeI_2)_6]I₂ [61].

1.2.2. Биоктаэдрические комплексы

В 2005 году при взаимодействии ReS₂ с расплавом KCN при 800°C были получены первые примеры биоктаэдрических комплексов рения [{Re₁₂CS₁₇}(CN)₆]^{6/8-} [53], и на протяжении следующих нескольких лет, вплоть до настоящего времени, проводилось

систематическое исследование их физико-химических свойств, включая как замещение, так и модификацию внутренних µ2-лигандов (Рис. 1.34).

Рис. 1.34. Реакции замещения и модификации внутренних µ2-лигандов в биоктаэдрических кластерных комплексах рения.

Так, была показана возможность селективного двухстадийного окисления мостиковых лигандов μ_2 -S в тригонально-призматической единице {Re₃(μ_6 -C)(μ_2 -S)₃Re₃} [128]. На первой стадии при смешении водных растворов K₆[Re₁₂CS₁₇(CN)₆]·20H₂O и H₂O₂ происходит быстрое взаимодействие, сопровождающееся окислением всех μ_2 -S²⁻ лигандов до μ_2 -SO₂²⁻. Вторая стадия окисления приводит к образованию аниона [{Re₁₂CS₁₄(SO₂)₂(SO₃)}(CN)₆]⁶⁻, в котором один из SO₂²⁻ лигандов подвергается дальнейшему окислению с образованием мостикового SO₃-лиганда. Характерной особенностью второй стадии является зависимость скорости окисления от интенсивности ультрафиолетового облучения реакционной смеси.

Для проверки обратимости реакций окисления µ2-S²⁻ лигандов было исследовано взаимодействие между соединением K6[{Re₁₂CS₁₄(µ2-SO₂)₃}(CN)₆] и такими

восстановителями как Na₂S и Na₂Se [129, 130]. Было обнаружено, что реакция аниона $[\{Re_{12}CS_{14}(\mu-SO_{2})_{3}\}(CN)_{6}]^{6-}$ с халькогенид-ионами в водном растворе при комнатной (в случае Na₂S) или повышенной температуре (80°C в случае Na₂Se) в конечном итоге приводит к образованию комплекса $[\{Re_{12}CS_{14}(\mu-S)_{3}\}(CN)_{6}]^{6-}$. Кроме того, было продемонстрировано, что на промежуточных стадиях образуются кластерные анионы $[\{Re_{12}CS_{14}(\mu-SO_{2})_{2}(\mu-S)\}(CN)_{6}]^{6-}$ и $[\{Re_{12}CS_{14}(\mu-SO_{2})(\mu-S)_{2}\}(CN)_{6}]^{6-}$, которые были выделены в индивидуальном виде. Масс-спектрометрические исследования реакционной смеси показали, что ступенчатое восстановление лигандов μ -SO₂²⁻ до μ -S²⁻ происходит за счет образования лигандов μ -SO²⁻, что редко встречается в химии кластеров.

Дальнейшее развитие химии двенадцатиядерных комплексов рения привело к получению серии новых биоктаэдрических кластеров, полученных ИЗ $[{Re_{12}CS_{14}(\mu-SO_2)_3}(CN)_6]^{6-}$ путем замещения μ -SO₂²⁻ лигандов. Так, нагревание смеси К₆[{Re₁₂CS₁₄(µ₂-SO₂)₃}(CN)₆] и KSeCN при добавлении небольшого количества воды до 160°С приводит к селективному замещению µ-SO2²⁻ лигандов на µ-Se²⁻. В аналогичной реакции с КОН при 220°С образуется комплекс с тремя мостиковыми кислородными лигандами [{ $Re_{12}CS_{14}(\mu-O)_3$ }(CN)_6]⁶⁻ [131]. Было показано, что последняя реакция является ступенчатой и протекает через образование кластерных интермедиатов со смешанным составом мостиковых лигандов, один ИЗ которых $[{Re_{12}CS_{14}(\mu-S)(\mu-O)_2}(CN)_6]^{6-}$, был выделен в индивидуальном виде [132]. Повышение температуры реакции со щелочью до 240°С приводит не только к замещению внутренних лигандов на µ-O, но и замещению всех цианидных терминальных лигандов на OH⁻, таким образом, образуется комплекс $K_6[\{Re_{12}CS_{14}(\mu-O)_3\}(OH)_6]$.

Реакция между кластером $K_6[{Re_{12}CS_{14}(\mu-O)_3}(OH)_6]$ и галогенидами этиламмония Et4NX (X = Cl или Br) привела к неизовалентному замещению µ-О-лигандов μ-Х-лигандами, которое сопровождалось двухэлектронным восстановлением кластерного ядра и образованием соединений (Et₄N)₅[$\{Re_{12}CS_{14}(\mu-X)_3\}X_6$] (X = Cl или Br) [133]. Примечательно, что полученные соединения демонстрируют красную люминесценцию в видимом и ближнем ИК-диапазоне, в отличие от многочисленных ранее синтезированных двенадцатиядерных кластеров рения с лигандами μ -Q²⁻ (Q = O, S, Se), µ-SO₂²⁻ и µ-SO₃²⁻.

1.3. Методы получения гетерометаллических кластерных соединений

Способы получения гетерометаллических рений-содержащих кластерных комплексов также, как и для гомометаллических соединений можно разделить на две группы: высокотемпературный ампульный синтез и синтез в растворах. Данные подходы практически полностью аналогичны существующим методам синтеза гомометаллических кластеров, которые были описаны в предыдущем разделе литературного обзора.

1.3.1. Высокотемпературный синтез

1.3.1.1. Кластеры {M₄}

Методом высокотемпературного синтеза из стехиометрических смесей простых веществ при нагревании до температуры 1100° С получена серия изотипных полимерных соединений со структурой шпинели AMo₂Re₂S₈, A = Fe, Co, Ni [134].

Соединения Re_{4-x}Mo_xS₄Te₄ [37, 135] [45] (x = 0–3) были получены нагреванием в вакуумированных запаянных ампулах стехиометричесаких количеств порошкообразных металлов (Re, Mo) и серы с пятикратным избытком теллура при температурах 650–700°C в течение 24 часов.

1.3.1.2. Кластеры {**M**₆}

В реакциях стехиометрических количеств рения, молибдена и соответствующего халькогена при температуре $1150-1200^{\circ}$ С происходило образование гетерометаллических аналогов фаз Шевреля $Mo_{6-x}Re_xQ_8$ (Q = S, Se, Te), при этом состав кластерных комплексов регулировался стехиометрией исходных соединений [136, 137].

В 1997 году исходя из смеси Re/Os/Cs₂CO₃/S, взятой в стехиометрических количествах, при температуре 850° C в токе водорода был получен первый ренийосмиевый кластерный комплекс Cs₃Re₅OsS₁₁ [138]. Спустя несколько лет серия ренийосмиевых комплексов была значительно расширена. Так, при взаимодействии стехиометрических количеств рения, хлорида рения(V), осмия и селена при 850°C была получена полимерная фаза Re₄Os₂Se₈Cl₄. Добавление в реакционную смесь стехиометрических количеств CsCl или KCl приводило к образованию соединений Cs₃Re₅OsSe₈Cl₆, Cs₂Re₄Os₂Se₈Cl₆ и K₂[{Re₃Os₃Se₈}Cl₆][{Re₄Os₂Se₇Cl}Cl₆], содержащих гетерометаллические анионы [{Re_{6-x}Os_xSe₈}Cl₆]^{x-4} (x = 1, 2, 3) [139]. При дальнейшем нагревании [{Re₅OsSe₈}Cl₆]³⁻ и [{Re₄Os₂Se₈}Cl₆]²⁻ в смеси NaCN и NaNO₃ были получены циано-комплексы [{Re₅OsSe₈}(CN)₆]³⁻ и [{Re₄Os₂Se₈}(CN)₆]²⁻ [32].

В 2004 году было обнаружено, что при взаимодействии полимерных рениймолибденовых тетраэдрических кластеров $Re_{4-x}Mo_xS_4Te_4$ (x = 0,67, 1, 1,33 и 2), с избытком КСN можно получать фазу Cs₅[{Re_{6-x}Mo_xS₈}(CN)₆]·2H₂O (x ~ 1,5), которая содержит смесь гетерометаллических анионов $[{Re_5MoS_8}(CN)_6]^{5-}$ и $[{Re_4Mo_2S_8}(CN)_6]^{5-}$ [140]. Позже были найдены условия получения гетерометаллических кластерных полимеров с соотношением металлов 1:1 K₆[{Re₃Mo₃Q₈}(μ -CN)(CN)₄] $_{\infty}$ (Q = S, Se; Рис. 1.35). Так, в реакции смеси ReS₂/MoS₂ с избытком KCN при температуре 750°C образуется тиокомплекс $K_6[{Re_3Mo_3S_8}(\mu-CN)(CN)_4]$ [13], в то время как использование селенидов ReSe₂ и MoSe₂ приводит к образованию $K_6[{Re_3Mo_3Se_8}(\mu-CN)(CN)_4]$ при температуре 630°С [14]. При повышении температуры последней реакции до 800°С образуется $K_{6}[{Re_{3,6}Mo_{2,4}Se_{8}}(CN)_{5}],$ полимерная фаза содержащая смесь анионов [{Re₄Mo₂Se₈}(CN)₆]⁴⁻ и [{Re₅MoSe₈}(CN)₆]⁵⁻, из которой были выделены соли (Bu4N)4[{Re4Mo2Se8}(CN)6] и K5[{Re5MoSe8}(CN)6] [33, 34].

Рис. 1.35. Строение полимерной цепочки [{Re₃Mo₃Q₈}(µ-CN)(CN)₄]_∞⁶⁻

1.3.2. Синтез в растворе

1.3.2.1. Кластеры {М4}

Работ, посвященных получению тетраэдрических гетерометаллических кластерных комплексов в растворе крайне мало. Описано лишь три гетерометаллических кубановых кластера, содержащих рений, которые были получены путем координации атомов

кобальта, никеля или меди к сульфидным лигандам соединений $[{Re_3(\mu_3-S)(\mu-S)_3}Cl_6(PMe_2Ph)_3]^-$ и $[{Re_3(\mu_3-S)(\mu-S)_3}Cl_6(PPh_3)_3]^-$. При этом образуются комплексы с ядрами {Re_3MS_4} (M = Co, Ni и Cu), строение которых уже было показано в разделе 1.1.2.2 [88-90].

1.3.2.2. Кластеры {М₆}

Для октаэдрических гетерометаллических комплексов (как и в случае гомометаллических соединений) синтез в растворе используется, как правило, для модификации лигандного окружения кластеров, которые были предварительно получены путем высокотемпературного ампульного синтеза. Так, $[{Re_5OsSe_8}Cl_6]^{3-}$ в реакции анионов И $[{Re_4Os_2Se_8}Cl_6]^{2-}$ с триэтилфосфином В диметилформамиде при кипячении были получены гексазамещенные катионные кластерные комплексы $[{Re_5OsSe_8}(PEt_3)_6]^{3+}$ и $[{Re_4Os_2Se_8}(PEt_3)_6]^{4+}$. В то же время, при замене растворителя на ацетонитрил в реакции с $[{Re_4Os_2Se_8}Cl_6]^{2-}$ происходило образование нейтрального комплекса транс, транс-1.36), $[{Re_4Os_2Se_8}(PEt_3)_2Cl_4]$ (Рис. В котором замещению селективно подвергались только хлорид-

Рис. 1.36. Строение кластера *транс,транс-*[{Re₄Os₂Se₈}(PEt₃)₂Cl₄]

ионы на атомах осмия. Данный факт позволил определить, что гетерометаллический металлоостов {Re₄Os₂} является транс-изомером [139].

Взаимодействие водных растворов солей $Cs_3[{Re_5OsSe_8}Cl_6]$ и $Cs_2[{Re_4Os_2Se_8}Cl_6]$ с избытком CsOH или KOH привело к образованию гидроксокомплексов $Cs_3[{Re_5OsSe_8}(OH)_6]$, $K_3[{Re_5OsSe_8}(OH)_6]$ и $Cs_2[{Re_4Os_2Se_8}(OH)_6]$. Было обнаружено, что $Cs_2[Re_4Os_2Se_8(OH)_6]$ со временем гидролизуется в водном растворе с образованием нейтральной аквагидроксоформы [${Re_5OsSe_8}(H_2O)_3(OH)_3$] [141].

Полученные высокотемпературным синтезом полимерные соединения $K_6[{Re_3Mo_3Q_8}(\mu-CN)(CN)_4]$ (Q = S, Se) могут быть переведены в растворимые формы $K_5[{Re_3Mo_3Q_8}(CN)_6]$ при интенсивном перемешинании в горячем водном растворе KCN

на воздухе в течение нескольких часов [13]. В данном случае помимо деполимеризации происходит окисление кластерного ядра.

Несмотря на наличие прочно координированных цианидных лигандов в комплексах $[{Re_3Mo_3Q_8}(CN)_6]^{5-}$ (Q = S, Se), которые крайне трудно поддаются замещению, был разработан синтетический подход, позволяющий проводить одностадийное замещение терминальных цианидных лигандов на органические N-донорные гетероциклы. Так, нагревание смеси комплекса и 4-*трет*-бутилпиридина (TBP) в водно-ацетонитрильном растворе при 160°C в течение 96 часов приводит к образованию нейтральных кластеров [{Re₃Mo₃Q₈}(TBP)₆] [15].

* * *

Подводя итог всему вышесказанному, можно заключить, что хотя кластерные комплексы рения и известны уже несколько десятилетий и стали предметом обширных исследований, интерес к изучению этих соединений до сих пор не угасает. Анализируя публикации, описанные в литературном обзоре, можно легко увидеть эволюцию исследований в области получения кластерных комплексов рения. Так, первые работы были посвящены в основном высокотемпературным синтезам бинарных и тройных кластерных халькогенидов и халькогалогенидов. Затем последовало развитие синтетических подходов к получению молекулярных комплексов (включая реакции деполимеризации и «вырезания» кластерного ядра) и их модификации (замещение внешних и внутренних лигандов, а также получение гетерометаллических кластеров).

Несмотря на то, что методы получения кластерных комплексов рения, казалось бы, изучены достаточно подробно, поиск новых путей синтеза этих соединений по-прежнему является актуальной задачей, а в литературе не перестают появляться работы, посвященные получению ранее неизвестных кластеров рения.

Хотя иодид рения (III) и не нашел широкого применения в качестве прекурсора для синтеза кластерных комплексов, положительные результаты, полученные в 2014 году [21, 24], говорят о том, что синтетический потенциал этого соединения раскрыт не полностью. На основании всех вышеизложенных данных нами было принято решение о дальнейшем исследовании возможности использования трииодида рения для получения новых кластерных комплексов в относительно мягких условиях, при которых другие исходные

соединения остаются инертными. Используя Re₃I₉ в качестве исходного соединения, мы планировали значительно упростить и оптимизировать методики синтеза известных кластеров рения, что сделает их более доступными, а также получить ранее неизвестные кластерные комплексы, что было невозможно при использовании других прекурсоров.

2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

2.1. Исходные реагенты, оборудование

Исходные реагенты

Порошок металлического рения освобождали от примесей оксидов прокаливанием в токе водорода при 1000°С. NaCN и KCN сушили в вакууме масляного насоса при температуре 200°С в течение 4 часов. CsCN получали путем разложения Cs₄[Fe(CN)₆] при температуре 700°С. Cs₄[Fe(CN)₆] получен по известной методике [142]. ReI₃ получали из металлического рения по известной методике, описанной в [16]. Остальные реактивы и растворители использовали в коммерчески доступной форме квалификации не ниже ч.д.а.

Рентгеноструктурные исследования

Рентгеноструктурный анализ монокристаллов проводили на автоматических Bruker D8 VENTURE, Bruker DUO и Bruker-Nonius X8 Apex. Во всех случаях использовалось излучение Mo-K α ($\lambda = 0,71073$ Å) с графитовым монохроматором.

Первичные данные, включающие в себя параметры ячейки, индексы Миллера и интенсивности измеренных отражений, обрабатывали с использованием программного обеспечения, поставляемого с дифрактометром, на котором производилась съёмка монокристалла. Поглощение учтено полуэмпирически по интенсивностям эквивалентных рефлексов (SADABS) [143].

Структуры расшифрованы прямым методом и уточнены полноматричным методом наименьших квадратов в анизотропном приближении с использованием пакета программ SHELX [144]. Атомы водорода молекул воды не были локализованы. Атомы водорода органических ионов и молекул были локализованы геометрически. Рисунки выполнены в программе DIAMOND 3.2.

Рентгенографические исследования

Рентгенографические исследования выполняли на порошковом дифрактометре Philips APD 1700 с использованием CuK_{α} излучения, графитового монохроматора и внутреннего кремниевого стандарта. Напряжение на аноде 40 кВ, сила тока – 35 мА. Съемка велась по точкам. Для регистрации дифрактограмм был использован следующий режим съемки: шаг 0,05°; накопление 2 с, диапазон съемки 5–50°. Расчет теоретической диффрактограммы осуществлялся при помощи бесплатного программного обеспечения Powder Cell for Windows v.2.4 (PCW).

Элементный анализ

Полуколичественный элементный анализ на тяжелые элементы для всех соединений проводили методом энергодисперсионной рентгеновской спектроскопии (ЭДС) на сканирующем электронном микроскопе Hitachi TM3000 на оборудовании Bruker QUANTAX 70 EDS. Количественный анализ на С, Н, N, S выполнялся на анализаторах Euro EA3000 и Vario MICRO cube. Исследование методом атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой (ИСП-АЭС) выполняли на высокоразрешающем спектрометре Thermo Scientific iCAP-6500 с распылительной камерой циклонного типа и распылителем «SeaSpray».

Электронные спектры поглощения

Электронные спектры поглощения (ЭСП) в диапазоне 200–800 нм регистрировали для растворов соединений в соответствующем растворителе на спектрометре Agilent Cary 60.

Инфракрасная спектроскопия

ИК-спектры в диапазоне 4000–400 см⁻¹записывались для твердотельных образцов, перетертых и прессованных в таблетки с KBr, на Фурье-спектрометре VERTEX 80.

Спектроскопия ядерного магнитного резонанса

ЯМР-спектры растворов комплексов в D₂O на ядрах ¹H, ¹³C, ¹⁴N и ³¹P регистрировали при комнатной температуре на спектрометре Bruker Avance-III 500 MHz. В качестве стандарта использовали тетраметилсилан.

Масс-спектрометрия

Электроспрей–ионизационная масс–спектрометрия (ESI-MS) проводилась на квадруполь-времяпролетном электроспрейном масс-спектрометре сверхвысокого разрешения maXis 4G, Bruker Daltonik GmbH с хроматографом UltiMate3000RS, Dionex с автосэмплером и УФ детектором DAD (МТЦ СО РАН).

Циклическая вольтамперометрия

Циклические вольтамперограммы для водных растворов записывали на приборе Metrohm 797 VA Computrace в диапазоне от –1,2 до +1,2 В. Использовалась стандартная трёхэлектродная ячейка. В качестве рабочего и вспомогательного электродов использовали торцевые стеклоуглеродный и платиновый электроды (Metrohm) соответственно, в качестве электрода сравнения – насыщенный хлорсеребряный электрод (C(KCl) = 3,5 M). В качестве электролита использовали 0,1 М водный раствор KCl.

Скорость развёртки варьировалась в интервале от 25 до 200 мВ/с. ΔE и $E_{1/2}$ рассчитывали по формулам: $\Delta E = |E_a - E_c|$ и $E_{1/2} = (E_a + E_c)/2$.

Магнитные свойства

Магнитные свойства поликристаллических образцов изучали на SQUIDмагнетометре MPMS-*XL* фирмы Quantum Design в интервале температур 1,77–300 К и магнитных полей H = 0-10 кЭ. Для определения парамагнитной составляющей молярной магнитной восприимчивости $\chi_p(T)$ из измеренных значений полной молярной восприимчивости $\chi = M/H$ (M – намагниченность) вычитались вклады ларморовского диамагнетизма χ_d и ферромагнетизма микропримесей $\chi_{F:} \chi_p(T,H) = \chi(T,H) - \chi_d - \chi_F(T,H)$. Температурно-независимый вклад χ_d вычислялся согласно аддитивной схеме Паскаля, а для определения ферромагнитного вклада χ_F проводились измерения полевых зависимостей M(H) и зависимостей M(T) при различных значениях магнитного поля. Для определения эффективного магнитного момента ($\mu_{эф\phi}$), температурные зависимости $\chi_p(T)$ анализировались с использованием зависимости Кюри-Вейсса $\chi_p(T) = N_a \mu_{a\phi\phi}^2/3k_B(T-\theta)$, где N_A и k_B — число Авогадро и постоянная Больцмана, соответственно $(\mu_{a\phi\phi} = [(3k_B/N_a)\chi_p(T-\theta)]^{1/2}).$

При наличии в свойствах образца признаков существенных обменных взаимодействий, проводились дополнительные исследования термомагнитной обратимости: проверялось наличие петли гистерезиса в кривой намагниченности *M*(*H*) и выполнялись измерения в режимах охлаждения в магнитном поле и без поля (FC и ZFC).

2.2. Методики синтеза

Синтез K₈[{Re₄(CCN)₄}(CN)₁₂]·5H₂O·KCN (1): Смесь ReI₃ (0,300 г, 0,53 ммоль) и цианида калия (0,345 г, 5,30 ммоль) тщательно перетирали в ступке, помещали в кварцевую ампулу, которую вакуумировали и запаивали. Ампулу нагревали до 480°C за 4 часа, выдерживали при этой температуре в течение 72 ч, а затем охлаждали со скоростью 50°C/ч. *Осторожно! При открытии ампулы возможно выделение высокотоксичного дициана*. Продукты реакции растворяли в воде, кипятили в течение часа и отфильтровывали от нерастворимых осадков. Раствор упаривали до объема 5 мл и охлаждали до комнатной температуры. Кристаллизация проводилась путем диффузии паров MeOH в водный раствор кластера и приводила к образованию красных призматических кристаллов, которые использовались для рентгеноструктурного анализа. Выход 1 составил 0,043 г (20%). ЭДС: К:Re = 9,2:4,0. Для C₂₁H₁₀K₉N₁₇O₅Re₄: вычислено С 15,0, Н 0,6, N 14,2, найдено С 15,0, Н 0,6, N 14,2. ИК-спектр (см⁻¹): δ(OH) 1615, ν(CN) 2134, 2091, 2043, ν(OH) 3472. ЭСП (H₂O): λ, нм (ε, M⁻¹см⁻¹) 215 (33260), 251 (15965), 305 (8625), 429 (750), 480 (420).

Синтез Na₈[{Re₄(PO)₃(PO₂)}(CN)₁₂]·15H₂O (2): Получен аналогично **1** из ReI₃ (0,300 г, 0,53 ммоль), цианида натрия (0,156 г, 3,18 ммоль) и красного фосфора (0,027 г, 0,88 ммоль) при 500°С. Кристаллизация приводила к образованию красных гексагональных кристаллов, которые использовались для рентгеноструктурного анализа. Выход **2** составил 0,094 г (42%). ЭДС: Na:Re:P = 7,8:4,0:4,1. Для C₁₂H₃₀N₁₂Na₈O₂₀P₄Re₄: вычислено С 8,4, Н 1,8, N 9,8, найдено С 8,5, Н 1,5, N 9,9. ИК-спектр (см⁻¹): v(P–O–Re) 922, v(P=O) 1090, δ(OH) 1620, v(CN) 2107, v(OH) 3401. ЭСП (H₂O): λ, нм (ε, M⁻¹cм⁻¹) 202 (104000), 222 (73700), 307 (9550), 421 (3000).

Синтез Na₈[{Re₄(PO)₄}(CN)₁₂]·18H₂O·MeOH (3): Получен аналогично 2 при температуре 550°С. Кристаллизация приводила к образованию желтых гексагональных кристаллов, которые использовались для рентгеноструктурного анализа. Выход 3 составил 0,125 г (53%). ЭДС: Na:Re:P = 7,8:4,0:4,1. Для C₁₃H₄₀N₁₂Na₈O₂₃P₄Re₄: вычислено C 8,7, H 2,8, N 9,4, найдено C 9,4, H 1,7, N 10,0. ИК-спектр (см⁻¹): v(P=O) 1088, δ (OH) 1643, v(CN) 2122, v(OH) 3430. ЭСП (H₂O): λ , нм (ϵ , M⁻¹см⁻¹) 221 (55825), 270 (8350), 358 (4035), 413 (2785).

Синтез K₈[{Re₄As₂(AsO)₂}(CN)₁₂]·12H₂O (4): Получен аналогично 1 из ReI₃ (0,300 г, 0,53 ммоль), цианида калия (0,207 г, 3,18 ммоль) и элементарного мышьяка (0,066 г, 0,88 ммоль) при 550°С. Кристаллизация приводила к образованию красных призматических кристаллов, которые использовались для рентгеноструктурного анализа. Выход 4 составил 0,156 г (61%). ЭДС: K:Re:As = 8,4:4,0:4,0. Для C₁₂H₂₄As₄K₈N₁₂O₁₄Re₄: вычислено С 7,5, H 1,3, N 8,8, найдено С 7,7, H 1,0, N 8,9. ИК-спектр (см⁻¹): v(AsO) 820, δ (OH) 1630, v(CN) 2110, v(OH) 3433. ЭСП (H₂O): λ , нм (ε , M⁻¹см⁻¹) 233 (52000), 313 (4770), 387 (3230), 467 (1785).

Синтез Na₈[{Re₄As_{1,5}(AsO)_{2,5}}(CN)₁₂]·20,5H₂O (5): Получен аналогично 1 из ReI₃ (0,300 г, 0,53 ммоль), цианида натрия (0,156 г, 3,18 ммоль) и элементарного мышьяка (0,066 г, 0,88 ммоль) при 550°С. Кристаллизация приводила к образованию красных игольчатых кристаллов, которые использовались для рентгеноструктурного анализа. Выход 5 составил 0,101 г (39%). ЭДС: Na:Re:As = 7,9:4,0:3,9. Для C₁₂H₄₁As₄N₁₂Na₈O₂₃Re₄:

вычислено С 7,4, H 2,1, N 8,6, найдено С 7,5, H 1,6, N 8,5. ИК-спектр (см⁻¹): ν(AsO) 801, δ(OH) 1626, ν(CN) 2091, ν(OH) 3545.

Синтез Cs₇K[{Re₄As₂(AsO)₂}(CN)₁₂]·12H₂O (6): Получен аналогично 1 из ReI₃ (0,300 г, 0,53 ммоль), цианида цезия (0,505 г, 3,18 ммоль) и элементарного мышьяка (0,066 г, 0,88 ммоль) при 550°С. Кристаллизация приводила к образованию красных пластинчатых кристаллов, которые использовались для рентгеноструктурного анализа. Выход 6 составил 0,172 г (49%). ЭДС: Cs:K:Re:As = 7,2:1,1:4,0:4,2. Для $C_{12}H_{24}As_4Cs_7KN_{12}O_{14}Re_4$: вычислено C 5,6, H 0,9, N 6,5, найдено C 5,7, H 0,9, N 6,7. ИКспектр (см⁻¹): v(AsO) 803, δ (OH) 1643, v(CN) 2087, v(OH) 3440.

Синтез K₇[{Re₄As₃S)}(CN)₁₂]·10H₂O (7): Получен аналогично 1 из ReI₃ (0,300 г, 0,53 ммоль), KCN (0,207 г, 3,18 ммоль), As (0,040 г, 0,53 ммоль) и S (0,017 г, 0,53 ммоль) при 550°C. Кристаллизация приводила к образованию красных гексагональных кристаллов, которые использовались для рентгеноструктурного анализа. Выход 7 составил 0,165 г (71%). ЭДС: K:Re:As:S = 7,3:4,0:3,2:0,9. Для C₁₂H₂₀As₃K₇N₁₂O₁₀Re₄S: вычислено C 8,2, H 1,1, N 9,5, S 1,8, найдено C 8,3, H 1,0, N 9,6, S 1,6. ИК-спектр (см⁻¹): δ (OH) 1616, v(CN) 2093, v(OH) 3433. ЭСП (H₂O): λ , нм (ϵ , M⁻¹см⁻¹) 240 (30260), 342 (4980), 391 (2445), 453 (2640), 554 (590).

Синтез К₇[{**Re**₄**As**₃**Se**)}(**CN**)₁₂]·**9**,**5H**₂**O** (**8**): Получен аналогично **1** из ReI₃ (0,300 г, 0,53 ммоль), KCN (0,207 г, 3,18 ммоль), As (0,040 г, 0,53 ммоль) и Se (0,042 г, 0,53 ммоль) при 550°С. Кристаллизация приводила к образованию красных гексагональных кристаллов, которые использовались для рентгеноструктурного анализа. Выход **8** составил 0,151 г (63%). ЭДС: K:Re:As:Se = 7,1:4,0:3,3:1,0. Для C₁₂H₁₉As₃K₇N₁₂O_{9,5}Re₄Se: вычислено C 8,0, H 1,0, N 9,3, найдено C 8,1, H 1,0, N 9,4. ИК-спектр (см⁻¹): δ(OH) 1639, v(CN) 2120, v(OH) 3358. ЭСП (H₂O): λ, нм (ε, M⁻¹см⁻¹) 225 (36200), 262 (23860), 346 (5730), 396 (3245),455 (2780), 575 (690).

Синтез К₆[{**R**е₄**As**₂**S**₂)}(**CN**)₁₂]·**3**,**5H**₂**O** (**9**): Получен аналогично **1** из ReI₃ (0,300 г, 0,53 ммоль), KCN (0,207 г, 3,18 ммоль) и As₂S₃ (0,066 г, 0,27 ммоль) при 550°С. Кристаллизация приводила к образованию красных игольчатых кристаллов, которые использовались для рентгеноструктурного анализа. Выход **9** составил 0,145 г (70%). ЭДС: K:Re:As:S = 6,1:4,0:2,1:1,8. Для C₁₂H₇As₂K₆N₁₂O_{3,5}Re₄S₂: вычислено C 9,2, H 0,5, N 10,7, S 4,1, найдено C 9,1, H 0,7, N 10,7, S 3,8. ИК-спектр (см⁻¹): δ(OH) 1611, v(CN) 2116, v(OH) 3520. ЭСП (H₂O): λ, нм (ε, M⁻¹см⁻¹) 236 (34600), 261 (26450), 339 (6120), 390 (3900), 451 (2920), 561 (610).

Синтез К₇[{Re4(AsO)_{2,25}As_{0,75}Te)}(CN)₁₂]·9H₂O (10): Получен аналогично 1 из ReI₃ (0,300 г, 0,53 ммоль), KCN (0,207 г, 3,18 ммоль), As (0,040 г, 0,53 ммоль) и Te (0,068 г, 0,53 ммоль) при 550°C. Кристаллизация приводила к образованию темно-красных игольчатых кристаллов, которые использовались для рентгеноструктурного анализа. Выход 10 составил 0,137 г (55%). ЭДС: K:Re:As:Te = 7,2:4,0:2,8:0,9. Для $C_{12}H_{18}As_3K_7N_{12}O_{11,25}Re4Te$: вычислено С 7,7, H 0,7, N 9,1, найдено С 7,7, H 1,0, N 8,9. ИК-спектр (см⁻¹): v(AsO) 843, δ (OH) 1616, v(CN) 2114, v(OH) 3420. ЭСП (H₂O): λ , нм (ϵ , M⁻¹см⁻¹) 228 (43000), 405 (3150), 454 (2635), 564 (745).

Синтез K₅[{Re₄S₃(SbO₃)}(CN)₁₂]·7H₂O (11): Получен аналогично 1 из ReI₃ (0,300 г, 0,53 ммоль), KCN (0,207 г, 3,18 ммоль), Sb (0,065 г, 0,53 ммоль) и S (0,017 г, 0,53 ммоль) при 550°С. Кристаллизация приводила к образованию коричневых пластинчатых кристаллов, которые использовались для рентгеноструктурного анализа. Выход 11 составил 0,063 г (29%). ЭДС: K:Re:S:Sb = 5,3:4,0:3,1:1,1. ИСП АЭС: K:Re:S:Sb = 4,92:4,00:3,04:1,03. Для C₁₂H₁₄K₅N₁₂O₁₀Re₄S₃Sb: вычислено C 8,8, H 0,9, N 10,2, S 5,8, найдено C 9,0, H 0,6, N 10,4, S 5,4. ИК-спектр (см⁻¹): (Sb-O) 968, 924, δ (OH) 1643, v(CN) 2125, v(OH) 3570. ЭСП (H₂O): λ , нм (ϵ , M⁻¹см⁻¹) 214 (47540), 252 (31400), 366 (1140), 491 (420).

Синтез K₅[{Re₄Se₃(SbO₃)}(CN)₁₂]·3H₂O (12): Получен аналогично 1 из ReI₃ (0,300 г, 0,53 ммоль), KCN (0,207 г, 3,18 ммоль), Sb (0,065 г, 0,53 ммоль) и Se (0,042 г, 0,53 ммоль) при 550°С. Кристаллизация приводила к образованию коричневых игольчатых кристаллов, которые использовались для рентгеноструктурного анализа. Выход 12 составил 0,098 г (43%). ЭДС: K:Re:Se:Sb = 5,1:4,0:2,8:1,0. ИСП АЭС: K:Re:Se:Sb= 5,05:4,00:3,08:0,95. Для C₁₂H₆K₅N₁₂O₆Re₄SbSe₃: вычислено C 8,4, H 0,4, N 9,8, найдено C 8,5, H 0,4, N 9,7. ИК-спектр (см⁻¹): (Sb-O) 991, 1076, δ (OH) 1627, v(CN) 2110, v(OH) 3350. ЭСП (H₂O): λ , нм (є, M⁻¹см⁻¹) 215 (36140), 252 (24470), 294 (8150), 486 (220).

Синтез K₅[{Re₄Se₃Sb}(CN)₁₂]·2H₂O (13): Получен аналогично 1 из ReI₃ (0,300 г, 0,53 ммоль), KCN (0,207 г, 3,18 ммоль), Sb₂O₃ (0,182 г, 0,53 ммоль) и Se (0,042 г, 0,53 ммоль) при 500°С. Кристаллизация приводила к образованию коричневых пластинчатых кристаллов, которые использовались для рентгеноструктурного анализа. Выход 13 составил 0,135 г (62%). ЭДС: K:Re:S:Sb = 5,1:4,0:2,9:1,1. ИСП АЭС: K:Re:Se:Sb =

5,01:4,00:2,96:0,98. Для C₁₂H₄K₅N₁₂O₂Re₄SbSe₃: вычислено С 8,8, Н 0,2, N 10,2, найдено С 8,7, Н 0,2, N 10,1. ИК-спектр (см⁻¹): δ(OH) 1622, ν(CN) 2155, ν(OH) 3515. ЭСП (H₂O): λ, нм (ε, M⁻¹см⁻¹) 218 (34710), 252 (24470), 249 (21295), 296 (14965), 366 (3940), 496 (1250).

Синтез Сs_{4,7}[{Re₄Bi_{0,7}Se_{3,3}](CN)₁₂]·H₂O (14): Смесь ReI₃ (0,300 г, 0,53 ммоль), цианида калия (0,207 г, 3,18 ммоль), элементарного селена (0,042 г, 0,53 ммоль) и оксида висмута (III) (0,123 г, 0,27 ммоль) тщательно перетирали в ступке, помещали в кварцевую ампулу, которую вакуумировали и запаивали. Ампулу нагревали до 500°C за 4 часа, выдерживали при этой температуре в течение 48 ч, а затем охлаждали со скоростью 50°C/ч. Продукты реакции растворяли в воде, кипятили и отфильтровывали. Раствор упаривали до объема 5 мл и охлаждали до комнатной температуры. Выпавшие через сутки коричневые кристаллы K₄[{Re₄Se₄}(CN)₁₂] отфильтровывали, а к оставшемуся красному раствору добавляли 200 мг CsCl. Кристаллизация проводилась путем диффузии паров MeOH в водный раствор кластера и приводила к образованию темно-красных пластинчатых кристаллов, которые использовались для рентгеноструктурного анализа. Выход 14 составил 0,106 г (37%). ЭДС: Cs:Re:Bi:Se = 4,8:4,0:0,9:3,1. ИСП АЭС: Cs:Re:Bi:Se = 4,76:4,00:0,69:3,32. Для C₁₂H₂Bi_{0,7}Cs_{4,7}N₁₂ORe₄Se_{3,3}: вычислено C 6,8, H 0,1, N 8,0, найдено C 6,7, H 0,4, N 7,8. ИК-спектр (см⁻¹): δ (OH) 1623, v(CN) 2126, v(OH) 3440. ЭСП (H₂O): λ , нм (ϵ , M⁻¹см⁻¹) 209 (52650), 277 (16000), 365 (4940), 478 (1840), 544 (1300).

Синтез Cs₅[{Re₄S₃Bi}(CN)₁₂]·2H₂O (15): Получен аналогично 14 из ReI₃ (0,300 г, 0,53 ммоль), KCN (0,207 г, 3,18 ммоль), Bi₂O₃ (0,123 г, 0,27 ммоль) и S (0,017 г, 0,53 ммоль) при 500°С. Кристаллизация не приводила к образованию кристаллов, пригодных для рентгеноструктурного анализа. Выход 15 составил 0,133 г (67%). ЭДС: Cs:Re:S:Bi = 5,2:4,0:2,9:1,1. Для C₁₂H₄Bi₁Cs₅N₁₂O₂Re₄S₃: вычислено С 7,0, H 0,2, N 8,2, S 4,7, найдено С 7,0, H 0,1, N 8,2, S 4,7. ИК-спектр (см⁻¹): δ (OH) 1626, v(CN) 2125, v(OH) 3435. ЭСП (H₂O): λ , нм (ϵ , M⁻¹см⁻¹) 210 (52930), 275 (2275), 359 (5185), 463 (1795), 518 (1450).

Синтез $K_8[{Re_4(AsO)_4}(CN)_{12}] \cdot 13H_2O$ (16): 100 МΓ (0,052)ммоль) K₈[{Re₄As₂(AsO)₂}(CN)₁₂]·12H₂О растворяли в 2 мл воды и добавляли при перемешивании 1 мл 10% водного раствора пероксида водорода. Через 5 минут к раствору добавляли 50 мл этилового спирта. Выпавший осадок отделяли и сушили на воздухе. Кристаллизация проводилась путем диффузии паров МеОН в водный раствор кластера и приводила к образованию темно-красных кубических кристаллов, которые использовались для PCA. Выход 17 составил 0,97 г (95%). ЭДС: К:Re:As = 8,1:4,0:4,1. Для

С₁₂H₂₆As₄K₈N₁₂O₁₇Re₄: вычислено С 7,3, Н 1,3, N 8,5, найдено С 7,7, Н 1,1, N 8,8. ИКспектр (см⁻¹): v(AsO) 820, δ(OH) 1630, v(CN) 2110, v(OH) 3433. ЭСП (H₂O): λ, нм (ε, М⁻¹см⁻¹) 233 (52000), 313 (4770), 387 (3230), 450 (9570).

(17): 100 (0,052 Синтез $Cs_8[{Re_4As_4}(CN)_{12}] \cdot 26H_2O \cdot 2CsI$ МΓ ммоль) K₈[{Re₄As₂(AsO)₂}(CN)₁₂]·12H₂O и 80 мг I₂ (0,315 ммоль) помещали в стеклянную ампулу, которую вакуумировали и запаивали. Ампулу нагревали до 200°С за 2 часа, выдерживали при этой температуре в течение 12 ч, а затем охлаждали со скоростью 50°С/ч. Продукты реакции растворяли в воде, кипятили и отфильтровывали от нерастворимых осадков. Раствор упаривали до объема 3 мл, охлаждали до комнатной температуры и добавляли 200 мг CsI. Кристаллизация проводилась путем диффузии паров МеОН в водный раствор кластера и приводила к образованию коричнево-красных кубических кристаллов, которые использовались для рентгеноструктурного анализа. Выход 17 составил 0,105 г (59%). ЭДС: Cs:Re:As:I = 10,1:4,0:3,8:1,7. Для C12H52As4Cs10I2N12O26Re4: вычислено С 4,2, Н 1,5, N 4,9, найдено С 4,4, Н 1,0, N 5,1. ИКспектр (см⁻¹): δ (OH) 1680, v(CN) 2185, v(OH) 3488. ЭСП (H₂O): λ , нм (ϵ , M⁻¹см⁻¹) 237 (39250), 350 (5580), 487 (2645).

Синтез $K_{6}[{Re_{4}As_{2}(AsOH)_{2}}(CN)_{12}] \cdot 4,5H_{2}O$ (18): 100 МΓ (0.052)ммоль) К₈[{Re₄As₂(AsO)₂}(CN)₁₂]·12H₂O и 0,300 мл HCl_{конц.} помещали в стеклянную ампулу, которую запаивали. Ампулу нагревали до 140°С за 2 часа, выдерживали при этой температуре в течение 12 ч, а затем охлаждали со скоростью 50°С/ч. Продукты реакции растворяли в воде, кипятили и отфильтровывали от нерастворимых осадков. Раствор упаривали до объема 3 мл, охлаждали до комнатной температуры. Кристаллизация проводилась путем диффузии паров МеОН в водный раствор кластера и приводила к образованию коричнево-красных игольчатых кристаллов, которые использовались для рентгеноструктурного анализа. Выход 18 составил 0,069 г (78%). ЭДС: K:Re:As = 6,3:4,0:3,8. Для C₁₂H₁₁As₄K₆N₁₂O_{6,5}Re₄: вычислено C 8,5, H 0,7, N 9,9, найдено C 8,6, H 0,5, N 9,7. ИК-спектр (см⁻¹): v(AsO) 720, δ(OH) 1638, v(CN) 2112, v(OH) 3437. ЭСП (H₂O): λ, нм (є, М⁻¹см⁻¹) 236 (40150), 407 (3825), 506 (2820).

Синтез K₃Cs₄[{Re₄(AsO)₃S}(CN)₁₂]·10H₂O (19): Получен аналогично 16 из K₇[{Re₄As₃S}(CN)₁₂]·10H₂O (0,100 г, 0,056 ммоль). Высаженный этанолом комплекс растворяли в воде и добавляли к раствору 200 мг CsCl. Кристаллизация проводилась путем диффузии паров МеOH в водный раствор кластера и приводила к образованию

ярко-красных пластинчатых кристаллов, которые использовались для РСА. Выход **19** составил 0,109 г (92%). ЭДС: K:Cs:Re:As:S = 3,3:3,9:4,0:3,2:0,9. Для C₁₂H₂₀As₃Cs₄K₃N₁₂O₁₃Re₄S: вычислено С 6,6, Н 0,9, N 7,7, S 1,5, найдено С 6,7, Н 0,8, N 7,8, S 1,5. ИК-спектр (см⁻¹): v(AsO) 848, δ(OH) 1636, v(CN) 2124, v(OH) 3446. ЭСП (H₂O): λ, нм (ε, M⁻¹см⁻¹) 241 (31900), 308 (5200), 422 (2650).

Синтез K₇[{Re₄(AsO)₃Se}(CN)₁₂]·5H₂O (20): Получен аналогично 16 из K₇[{Re₄As₃Se}(CN)₁₂]·9,5H₂O (0,100 г, 0,055 ммоль). Кристаллизация приводила к образованию красно-коричневых пластинчатых кристаллов, которые использовались для рентгеноструктурного анализа. Выход 20 составил 0,089 г (91%). ЭДС: K:Re:As:Se = 7,1:4,0:3,1:0,8. Для C₁₂H₁₀As₃K₇N₁₂O₈Re₄Se: вычислено C 8,1, H 0,6, N 9,5, найдено C 8,2, H 0,4, N 9,6. ИК-спектр (см⁻¹): v(AsO) 845, δ (OH) 1634, v(CN) 2130, v(OH) 3420. ЭСП (H₂O): λ , нм (ϵ , M⁻¹см⁻¹) 245 (33500), 322 (5890), 434 (3460).

Синтез Cs₅K₂[{Re₄(AsO)₃Te}(CN)₁₂]·5,5H₂O (21): Получен аналогично 19 из K₇[{Re₄(AsO)_{2,25}As_{0,75}Te}(CN)₁₂]·9H₂O (0,100 г, 0,053 ммоль). Кристаллизация приводила к образованию коричневых пластинчатых кристаллов, которые использовались для рентгеноструктурного анализа. Выход 21 составил 0,117 г (96%). ЭДС: Cs:K:Re:As:Te = 5,1:2,3:4,0:3,2:1,1. Для C₁₂H₁₁As₃Cs₅K₂N₁₂O_{8,5}Re₄Te: вычислено C 6,3, H 0,5, N 7,3, найдено C 6,3, H 0,4, N 7,4. ИК-спектр (см⁻¹): v(AsO) 847, δ (OH) 1622, v(CN) 2120, v(OH) 3402. ЭСП (H₂O): λ , нм (ϵ , M⁻¹см⁻¹) 232 (40800), 402 (3850), 472 (3840).

Синтез Cs4[{Re4S2O2}(CN)12]·2H2O (22): Получен аналогично 16 из $K_6[{Re4As2S2}(CN)12]$ ·10H2O (0,100 г, 0,059 ммоль). Кристаллизация с добавлением 0,200 г CsCl приводила к образованию коричнево-зеленых пластинчатых кристаллов, которые использовались для рентгеноструктурного анализа. Было обнаружено, что комплекс образуется в смеси с Cs4,5K0,5[{Re3S(SO2)O2}(CN)9]·2H2O (23).

Синтез $C_{4,5}K_{0,5}[{Re_{3}S(SO_{2})O_{2}}(CN)_{9}] \cdot 2H_{2}O$ (23): 100 МΓ (0,059)ммоль) К₆[{Re₄As₂S₂}(CN)₁₂]·10H₂O растворяли в 2 мл воды и добавляли при перемешивании 1 мл 10% водного раствора пероксида водорода. В течение 10 минут раствор нагревали на плитке ($T = 120^{\circ}C$), при этом цвет изменялся от красного до темно-зеленого. Раствор охлаждали до комнатной температуры и добавляли 200 мг CsCl. Кристаллизация проводилась путем диффузии паров МеОН в водный раствор кластера и приводила к образованию темно-зеленых игольчатых кристаллов, которые использовались для РСА. составил 0,064 г (69%). ЭДС: Cs:K:Re:S = 4,2:0,7:3,0:2,3. Выход 23 Для

С₉H₄Cs_{4,5}K_{0,5}N₉O₆Re₃S₂: вычислено С 6,9, Н 0,3, N 8,0, S 4,1, найдено С 6,9, Н 0,4, N 8,1, S 4,1. ИК-спектр (см⁻¹): v(ReO) 950, v(SO₂) 1047, v(SO₂) 1173, δ(OH) 1632, v(CN) 2119, v(OH) 3445. ЭСП (H₂O): λ, нм (ε, M⁻¹см⁻¹) 218 (26200), 328 (4980), 425 (1480).

Синтез Cs₄[{Re₄S₃O}(CN)₁₂]·2H₂O (24): Получен аналогично 23 из Cs₅[{Re₄S₃Bi}(CN)₁₂]·2H₂O (0,100 г, 0,048 ммоль). Кристаллизация приводила к образованию коричнево-зеленых игольчатых кристаллов, которые использовались для рентгеноструктурного анализа. Выход 24 составил 0,069 г (82%). ЭДС: Cs:Re:S = 3,9:4,0:3,3. Для C₁₂H₄Cs₄N₁₂O₃Re₄S₃: вычислено C 8,3, H 0,2, N 9,7, S 5,5, найдено C 8,3, H 0,2, N 9,6, S 5,6. ИК-спектр (см⁻¹): v(ReO) 678, δ (OH) 1623, v(CN) 2146, v(OH) 3440. ЭСП (H₂O): λ , нм (ϵ , M⁻¹см⁻¹) 224 (31940), 274 (14650), 327 (6670), 430(1835), 575 (285).

Синтез Cs4[{Re4Se₃O}}(CN)₁₂]·2H₂O (25): Получен аналогично 23 из K₅[{Re4Se₃Sb}}(CN)₁₂]·2H₂O (0,100 г, 0,061 ммоль). Кристаллизация приводила к образованию коричнево-зеленых игольчатых кристаллов, которые использовались для рентгеноструктурного анализа. Выход 25 составил 0,085 г (74%). ЭДС: Cs:Re:Se = 4,2:4,0:2,9. Для C₁₂H₄Cs₄N₁₂O₃Re₄Se₃: вычислено C 7,7, H 0,2, N 9,0, найдено C 7,7, H 0,1, N 8,9. ИК-спектр (см⁻¹): v(ReO) 690, δ (OH) 1625, v(CN) 2152, v(OH) 3450. ЭСП (H₂O): λ , нм (ϵ , M⁻¹см⁻¹) 212 (26500), 229 (29850), 282 (11390), 343 (5960), 453 (1565), 605 (235). Также может быть получен из Cs₅[{Re4Se₃Bi}}(CN)₁₂]·10H₂O по аналогичной методике.

Синтез Cs₂K4[{Mo₂Re₂S4}(CN)₁₂]·2H₂O·2MeOH (26): Смесь ReI₃ (0,200 г, 0,35 ммоль), MoO₃ (0,050 г, 0,35 ммоль), S (0,017 г, 0,53 ммоль) и цианида калия (0,207 г, 3,18 ммоль) тщательно перетирали в ступке, помещали в кварцевую ампулу, которую вакуумировали и запаивали. Ампулу нагревали до 450°C за 4 часа, выдерживали при этой температуре в течение 48 ч, а затем охлаждали со скоростью 50°C/ч. Продукты реакции растворяли в воде, кипятили и отфильтровывали от нерастворимых осадков. Раствор упаривали до объема 5 мл и охлаждали до комнатной температуры. Кристаллизация проводилась путем диффузии паров MeOH в водный раствор кластерного комплекса и 0,200 г CsCl и приводила к образованию коричневых игольчатых кристаллов, которые использовались для рентгеноструктурного анализа. Выход **26** составил 0,065 г (24%). ЭДС: Cs:K:Mo:Re:S = 2,3:4,1:1,9:2,0:4,1. Для C₁₄H₁₂Cs₂K₄Mo₂N₁₂O₄Re₂S₄: вычислено C 10,9, H 0,8, N 11,0, S 8,4, найдено C 10,5, H 0,6, N 11,1, S 8,7. ИК-спектр (см⁻¹): δ (OH) 1624, v(CN) 2126, v(OH) 3440. ЭСП (H₂O): λ , нм (ϵ , M⁻¹см⁻¹) 216 (30430), 245 (21660), 285 (16340), 386 (2555), 438 (1800).

Синтез K₆[{Mo₂Re₂Se₄}(CN)₁₂]·10H₂O (27): Получен аналогично 26 из ReI₃ (0,200 г, 0,35 ммоль), MoO₃ (0,050 г, 0,35 ммоль), Se (0,042 г, 0,53 ммоль) и KCN (0,207 г, 3,18 ммоль) при 500°С. Кристаллизация приводила к образованию коричневых призматических кристаллов, которые использовались для рентгеноструктурного анализа. Выход 27 составил 0,163 г (59%). ЭДС: K:Mo:Re:Se = 6,3:2,1:2,0:4,2. Для $C_{12}H_{20}K_{6}Mo_{2}N_{12}O_{10}Re_{2}Se_{4}$: вычислено C 8,9, H 1,2, N 10,4, найдено C 9,2, H 0,7, N 10,6. ИК-спектр (см⁻¹): δ (OH) 1619, v(CN) 2119, v(OH) 3437. ЭСП (H₂O): λ , нм (ϵ , M⁻¹см⁻¹) 234 (32830), 263 (22600), 316 (17860), 356 (7710), 471 (1330).

Синтез Cs₇[{Mo₃ReS₄}(CN)₁₂]·12H₂O (28): Получен аналогично 26 из ReI₃ (0,100 г, 0,18 ммоль), MoO₃ (0,076 г, 0,53 ммоль), S (0,017 г, 0,53 ммоль) и KCN (0,207 г, 3,18 ммоль) при 500°С. Кристаллизация с добавлением 0,200 г CsCl приводила к образованию коричневых игольчатых кристаллов, которые использовались для рентгеноструктурного анализа. Выход 28 составил 0,126 г (38%). ЭДС: Cs:K:Mo:Re:S = 6,1:1,1:2,8:1,0:4,3. Для C₁₂H₂₄Cs₇Mo₃N₁₂O₁₂ReS₄: вычислено С 7,0 H 1,2, N 8,1, S 6,2, найдено С 7,5, H 0,4, N 8,7, S 6,6. ИК-спектр (см⁻¹): δ (OH) 1625, v(CN) 2152, v(OH) 3437. ЭСП (H₂O): λ , нм (ϵ , M⁻¹см⁻¹) 215 (31770), 275 (13060), 305 (8740), 372 (2750), 427 (1780).

Синтез K₇[{Mo₃ReSe₄}(CN)₁₂]·8H₂O·2MeOH (29): Получен аналогично 26 из ReI₃ (0,100 г, 0,18 ммоль), MoO₃ (0,076 г, 0,53 ммоль), Se (0,042 г, 0,53 ммоль) и KCN (0,207 г, 3,18 ммоль) при 550°С. Кристаллизация приводила к образованию коричневых призматических кристаллов, которые использовались для рентгеноструктурного анализа. Выход 29 составил 0,195 г (71%). ЭДС: K:Mo:Re:Se = 7,2:2,9:1,0:4,0. Для $C_{12}H_{24}K_7Mo_3N_{12}O_{10}ReSe_4$: вычислено С 9,2, H 1,5, N 10,7, найдено С 9,3, H 1,3, N 10,8. ИК-спектр (см⁻¹): δ (OH) 1632, v(CN) 2104, v(OH) 3550. ЭСП (H₂O): λ , нм (ϵ , M⁻¹см⁻¹) 225 (34970), 300 (10850), 330 (7755), 409 (2350).

Синтез $Cs_5K[{Re_2W_2S_4}(CN)_{12}] \cdot 2H_2O \cdot MeOH$ (30) и $Cs_5,_2K_{1,8}[{ReW_3S_4}(CN)_{12}] \cdot 5H_2O$ (31): Получены в смеси аналогично 26 из ReI₃ (0,200 г, 0,35 ммоль), WO₃ (0,082 г, 0,35 ммоль), S (0,017 г, 0,53 ммоль) и KCN (0,207 г, 3,18 ммоль) при 500°C. Кристаллизация приводила к образованию двух типов кристаллов, которые использовались для рентгеноструктурного анализа. Образование смеси продуктов происходит при любом соотношении ReI₃:WO₃.

Синтез К₆[{Re₂W₂Se₄}(CN)₁₂]·10H₂O (32): Получен аналогично 26 из ReI₃ (0,200 г, 0,35 ммоль), WO₃ (0,081 г, 0,35 ммоль), Se (0,042 г, 0,53 ммоль) и KCN (0,207 г, 3,18

ммоль) при 500°С. Кристаллизация приводила к образованию коричневых призматических кристаллов, которые использовались для рентгеноструктурного анализа. Выход **32** составил 0,189 г (62%). ЭДС: К:Re:W:Se = 6,2:2,0:2,1:3,8. Для $C_{12}H_{20}K_6N_{12}O_{10}Re_2Se_4W_2$: вычислено С 8,1, Н 1,1, N 9,4, найдено С 8,3, Н 0,7, N 9,7. ИКспектр (см⁻¹): δ (OH) 1603, v(CN) 2119, v(OH) 3510. ЭСП (H₂O): λ , нм (ϵ , M⁻¹см⁻¹) 221 (33860), 249 (22800), 297 (16400), 328 (9345), 464 (1240).

Синтез Cs₆[{ReW₃Se₄}(CN)₁₂]·5,2H₂O·MeOH (33): Получен аналогично 26 из ReI₃ (0,100 г, 0,18 ммоль), WO₃ (0,123 г, 0,53 ммоль), Se (0,042 г, 0,53 ммоль) и KCN (0,207 г, 3,18 ммоль) при 500°С. Кристаллизация с добавлением 0,200 г CsCl приводила к образованию коричневых игольчатых кристаллов, которые использовались для рентгеноструктурного анализа. Выход **33** составил 0,222 г (55%). ЭДС: Cs:Re:W:Se = 6,1:1,0:2,8:3,8. Для C₁₃H_{14,4}Cs₆N₁₂O_{6,2}ReSe₄W₃: вычислено C 6,8, H 0,6, N 7,3, найдено C 6,8, H 0,5, N 7,3. ИК-спектр (см⁻¹): δ (OH) 1611, v(CN) 2119, v(OH) 3430. ЭСП (H₂O): λ , нм (є, M⁻¹см⁻¹) 218 (36810), 316 (12830), 423 (2615).

Синтез K₈[{Re₃Se₄(CN)₉}{Re₃MoSe₄}(CN)₉]·6H₂O (34): Смесь ReI₃ (0,300 г, 0,53 ммоль), MoO₃ (0,026 г, 0,18 ммоль), Se (0,042 г, 0,53 ммоль) и цианида калия (0,207 г, 3,18 ммоль) тщательно перетирали в ступке, помещали в кварцевую ампулу, которую вакуумировали и запаивали. Ампулу нагревали до 400°C за 4 часа, выдерживали при этой температуре в течение 48 ч, а затем охлаждали со скоростью 50°C/ч. Продукты реакции растворяли в воде, кипятили и отфильтровывали от нерастворимых продуктов. Раствор упаривали до объема 5 мл и охлаждали до комнатной температуры. Кристаллизация проводилась путем диффузии паров MeOH в водный раствор кластера и приводила к образованию коричневых игольчатых кристаллов, которые использовались для рентгеноструктурного анализа. Выход **34** составил 0,159 г (66%). ЭДС: K:Mo:Re:Se = 8,3:6,0:0,9:8,2. Для C₁₈H₁₂K₈MoN₁₈O₆Re₆Se₈: вычислено C 7,9, H 0,4, N 9,2, найдено C 8,0, H 0,5, N 9,2. ИК-спектр (см⁻¹): δ (OH) 1624, v(CN) 2110, v(OH) 3446. ЭСП (H₂O): λ , нм (ϵ , M⁻¹см⁻¹) 263 (29400), 332 (15380), 460 (7960), 600 (4800).

Синтез K₈[{Re₃Se₄(CN)₉}{Re₃WSe₄}(CN)₉]·7H₂O·MeOH (35): Получен аналогично 34 из ReI₃ (0,300 г, 0,53 ммоль), WO₃ (0,042 г, 0,18 ммоль), Se (0,042 г, 0,53 ммоль) и KCN (0,207 г, 3,18 ммоль) при 400°С. Кристаллизация приводила к образованию коричневых игольчатых кристаллов, которые использовались для рентгеноструктурного анализа. Выход 35 составил 0,175 г (72%). ЭДС: K:Re:W:Se = 8,2:6,0:1,2:7,8. Для

С₁₈H₁₈K₈N₁₈O₈Re₆Se₈W: вычислено С 7,5, Н 0,6, N 8,8, найдено С 7,7, Н 0,5, N 9,2. ИКспектр (см⁻¹): δ(OH) 1620, ν(CN) 2126, ν(OH) 3435. ЭСП (H₂O): λ, нм (ε, М⁻¹см⁻¹) 207 (57450), 263 (27260), 271 (12990), 314 (17500), 421 (6270), 560 (2800).

Синтез Cs₇[{Re₃S₄(CN)₉}{Re₄S₄}(CN)₉]·4H₂O (36): Получен аналогично 34 из ReI₃ (0,300 г, 0,53 ммоль), MoO₃ (0,026 г, 0,18 ммоль), S (0,017 г, 0,53 ммоль) и KCN (0,207 г, 3,18 ммоль) при 400°С. Кристаллизация с добавлением 200 мг CsCl приводила к образованию коричневых гексагональных кристаллов, которые использовались для рентгеноструктурного анализа. Выход 36 составил 0,120 г (53%). ЭДС: Cs:Re:S = 7,3:7,0:8,2. Для C₁₈H₈Cs₇N₁₈O₄Re₇S₈: вычислено C 7,1, H 0,3, N 8,3, найдено C 7,2, H 0,2, N 8,4. ИК-спектр (см⁻¹): δ (OH) 1625, v(CN) 2119, v(OH) 3450. ЭСП (H₂O): λ , нм (ϵ , M⁻¹см⁻¹) 273 (25650), 303 (16950), 446 (8860). Также может быть получен при замене MoO₃ на WO₃.

Синтез К₇[{**Re**₃**Se**₄(**CN**)₉}{**Re**₄**Se**₄}(**CN**)₉]·**11H**₂**O** (**37**): Получен аналогично **34** из ReI₃ (0,300 г, 0,53 ммоль), Р_{красн.} (0,016 г, 0,53 ммоль), Se (0,042 г, 0,53 ммоль) и KCN (0,207 г, 3,18 ммоль) при 400°С. Кристаллизация приводила к образованию коричневых игольчатых кристаллов, которые использовались для рентгеноструктурного анализа. Выход **37** составил 0,142 г (65%). ЭДС: К:Re:Se = 6,8:7,0:8,1. Для C₁₈H₂₂K₇N₁₈O₁₁Re₇Se₈: вычислено С 7,5, H 0,8, N 8,7, найдено С 7,5, H 0,7, N 8,8. ИК-спектр (см⁻¹): δ(OH) 1625, v(CN) 2125, v(OH) 3444. ЭСП (H₂O): λ, нм (ε, M⁻¹cм⁻¹) 250 (23890), 325 (7080), 477 (4533).

Синтез K₈[{ResSes(µ-O)3}(CN)18]·19H₂O (38): Смесь ReI₃ (0,300 г, 0,53 ммоль), RuCl₃ (0,018 г, 0,09 ммоль), Se (0,042 г, 0,53 ммоль) и цианида калия (0,207 г, 3,18 ммоль) тщательно перетирали в ступке, помещали в кварцевую ампулу, которую вакуумировали и запаивали. Ампулу нагревали до 400°C за 4 часа, выдерживали при этой температуре в течение 48 ч, а затем охлаждали со скоростью 50°C/ч. Продукты реакции растворяли в воде, кипятили и отфильтровывали от нерастворимых осадков. Раствор упаривали до объема 5 мл и охлаждали до комнатной температуры. Кристаллизация проводилась путем диффузии паров MeOH в водный раствор кластера и приводила к образованию коричневых игольчатых кристаллов, которые использовались для рентгеноструктурного анализа. Выход **38** составил 0,052 г (24%). ЭДС: K:Re:Se = 8,2:8,0:7,9. Для C₁₈H₃₈K₈N₁₈O₂₂Re₈Se₈: вычислено C 6,5, H 1,2, N 7,6, найдено C 6,6, H 0,9, N 7,7. ИКспектр (см⁻¹): v(ReO) 909, δ (OH) 1625, v(CN) 2141, v(OH) 3451. ЭСП (H₂O): λ , нм (ε, M⁻¹см⁻¹) 206 (45200), 471 (2850), 601 (1025).

Синтез К₉[{**Re**₁₂**S**₁₄}(**CN**)₂₇]·**14H**₂**O**·**KI** (**39**): Получен аналогично **38** из ReI₃ (0,300 г, 0,53 ммоль), RuCl₃ (0,018 г, 0,09 ммоль), S (0,017 г, 0,53 ммоль) и KCN (0,207 г, 3,18 ммоль) при 400°С. Кристаллизация приводила к образованию коричневых игольчатых кристаллов, которые использовались для рентгеноструктурного анализа. Выход **39** составил 0,038 г (21%). ЭДС: K:Re:S:I = 10,4:12,0:14,2:0,8. Для C₂₇H₂₈IK₁₀N₂₇O₁₄Re₁₂S₁₄: вычислено С 7,8, H 0,7, N 9,1, S 10,8, найдено С 8,1, H 0,5, N 9,3, S 11,2. ИК-спектр (см⁻¹): δ(OH) 1620, ν(CN) 2146, ν(OH) 3440.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

3.1. Получение тетраэдрических кластерных комплексов из ReI₃

3.1.1. Халькоцианидные кластерные комплексы рения

Низшими галогенидами рения со стехиометрией ReX₃ (X = Cl, Br, I) являются полимерные фазы состава [Re₃X₉]_n. Их структура образована треугольными кластерами {Re₃} с двойными ковалентными связями Re–Re [94]. Металлокластер координирован тремя внутренними лигандами µ-X, расположенными по сторонам треугольника, и девятью апикальными галогенидными лигандами, некоторые из которых связывают соседние кластеры. В случае X = Cl или Br отдельные растворимые кластеры состава [Re₃X₉L₃] могут быть получены взаимодействием ReX₃ с основаниями Льюиса, например, аминами [145], производными фосфина [146] или водой [147, 148]. Во время этих превращений металлический центр и внутренние лиганды не изменяют свою структуру. В то же время было обнаружено, что Re₃I₉ разлагается при реакции даже с мягкими основаниями [21], а присутствие кислорода в реакционной смеси приводит к образованию октаэдрического кластерного комплекса [{Re₆(µ-O)₁₂}(3-Mepy)₆]BPh₄, не содержащего иод [24]. Высокая склонность трииодида рения к химическим превращениям, затрагивающим кластерное ядро, позволяет предположить, что Re₃I₉ может быть перспективным прекурсором. для синтеза новых кластеров рения при температурах, при которых другие исходные соединения остаются инертными.

На первом этапе работы мы попытались получить хорошо известные тетраэдрические халькогенидные кластерные комплексы рения, содержащие анионы состава $[{Re_4(\mu_3-Q)_4}(CN)_{12}]^{4-}$ (Q = S, Se, Te; Puc. 3.1). В настоящее время известно несколько методов синтеза халькоцианидных кубановых кластеров рения [38, 65, 99, 100, 105, 106], однако наиболее популярным является метод получения комплексов [{ $Re_4(\mu_3-Q)_4$ }(CN)_{12}]^{4-}(Q = S, Se, Te) взаимодействием $[{Re_4(\mu_3-Q)_4}(TeX_2)_4X_8]$ (Q = S, Se, Te, X = Cl; Q = Te, X = Br) с водным

Рис. 3.1. Строение анионов [{Re₄Q₄}(CN)₁₂]⁴⁻

раствором КСN. Теллурохлоридные комплексы [{Re₄(µ₃-Q)₄}(TeCl₂)₄Cl₈] предварительно получают из ReCl₅ по следующим схемам [65]:

$4 \operatorname{ReCl}_5 + 4 \operatorname{S} + 5 \operatorname{Te} \rightarrow [\{\operatorname{Re}_4(\mu_3 - S)_4\}(\operatorname{TeCl}_2)_4 \operatorname{Cl}_8] + \operatorname{TeCl}_4$	$(T = 400^{\circ}C)$
$4 \operatorname{ReCl}_5 + 4 \operatorname{Se} + 5 \operatorname{Te} \rightarrow [\{\operatorname{Re}_4(\mu_3 \operatorname{-Se})_4\}(\operatorname{TeCl}_2)_4 \operatorname{Cl}_8] + \operatorname{TeCl}_4$	$(T = 400^{\circ}C)$
$4 \operatorname{ReCl}_5 + 9 \operatorname{Te} \rightarrow [\{\operatorname{Re}_4(\mu_3 \operatorname{-Te})_4\}(\operatorname{TeCl}_2)_4 \operatorname{Cl}_8] + \operatorname{TeCl}_4$	$(T = 350^{\circ}C)$

Теллуробромидный комплекс [{Re₄(µ₃-Te)₄}(TeBr₂)₄Br₈] получают нагреванием стехиометрических количеств простых веществ при температуре 550°C [38].

Кроме того, тиоцианидные кластерные комплексы $[\text{Re}_4(\mu_3-S)_4(\text{CN})_{12}]^{4-}$ можно получать исходя из Re_2S_7 [99] или $\text{Re}_3\text{S}_7\text{Br}_7$ [100] путем взаимодействия с водным раствором с KCN. В случае Re_2S_7 также образуется побочный продукт – ромбический четырехъядерный кластерный анион $[\text{Re}_4(\mu_3-S)_2(\mu-SO_2)_4(\text{CN})_{10}]^{8-}$.

Нами был разработан простой и универсальный способ получения комплексов $[\{\text{Re}_4(\mu_3-\text{Q})_4\}(\text{CN})_{12}]^4$ (Q = S, Se, Te) [149], что существенно расширяет возможности дальнейшего исследования свойств этих соединений. Так, путем реакции иодида рения (III), цианида калия и соответствующего халькогена при 350°C нам удалось получить кластерные комплексы рения K4[{Re4(μ_3 -Q})_4}(CN)₁₂] с выходами 65–90%. Температура является оптимальной и была определена путем проведения серии экспериментов в диапазоне температуру 300–500°C с шагом в 50°C. Повышение температуры до 400°C и выше приводит к образованию смеси тетраэдрических и октаэдрических комплексов [{Re4(μ_3 -Q})_4}(CN)₁₂]⁴ и [{Re6(μ_3 -Q})_8}(CN)₆]⁴, а при более низкой температуре выход продуктов значительно снижается. Время реакции варьировалось в диапазоне 24–72 часа с интервалом в 12 часов, и было определено его оптимальное (с точки зрения максимального выхода) значение – 48 часов.

Согласно данным ЭДС соотношение К:Re:Q \approx 1:1:1 (Q = S, Se, Te), что соответствует формуле K4[{Re4(µ3-Q)4}(CN)12]. Для подтверждения состава и фазовой чистоты полученных комплексов были записаны порошковые дифрактограммы в интервалах углов 20 5–50° и сравнены с теоретическими, рассчитанными на основе структурных данных для известных соединений (Рис. П1–П3). По данным РФА теллуридный комплекс кристаллизуется в форме пентагидрата K4[{Re4Te4}(CN)12]·5H2O, описанного ранее [105]. Сульфидный и селенидный комплексы оказались изоструктурны, однако в базе данных не удалось найти соответствующую кристаллическую структуру. Полученные

упариванием водного раствора монокристаллы для тиокомплекса оказались пригодны для PCA, и согласно анализу состав комплекса K4[{Re₄S₄}(CN)₁₂]·H₂O.

3.1.2. Кластерный комплекс с лигандами ССN³⁻

Убрав из реакционной смеси халькоген, мы обнаружили, что прямая реакция ReI₃ с KCN при 480°С и дальнейшая перекристаллизация из воды образованию приводит К соединения К₈[{Re₄(µ₃-CCN)₄}(CN)₁₂] (1). Новый кластерный анион $[{\text{Re}_4(\mu_3-\text{CCN})_4}(\text{CN})_{12}]^{8-}$ (Рис. 3.2) является типичным примером четырехъядерных кластерных комплексов с тетраэдрическим ядром, однако, окружение металлического лигандное центра необычно и содержит четыре лиганда (μ_3 -CCN)³⁻, которые представляют собой депротонированный ацетонитрил [150, 151]. Можно предположить, что

стабилизация этих лигандов в столь жестких условиях обусловлена координацией к атомам рения. Отметим, что ранее было описано крайне мало примеров включения иона (µ₃-CCN)^{3–} в структуру неорганических соединений [152-155].

1 Комплекс был детально охарактеризован. Элементный анализ формулой хорошо согласуется с $K_8[{Re_4(\mu_3-CCN)_4}(CN)_{12}] \cdot 5H_2O \cdot KCN.$ Согласно данным рентгенофазового анализа соединение не содержит кристаллических примесей (Рис. П4). Полученный комплекс стабилен на воздухе и демонстрирует отличную растворимость В воде. Стабильность в водном растворе была подтверждена неизменностью электронных

 $[{Re_4(\mu_3-CCN)_4}(CN)_{12}]^{8-}$

спектров поглощения, записанных для свежеприготовленного раствора и для раствора, выдержанного на воздухе в течение 1 месяца (Рис. 3.3). Кроме того, масс-спектрометрия

показала, что кластерный анион может диссоциировать в процессе ионизации, теряя CNлиганды, при этом сохраняя все внутренние (µ₃-CCN)^{3–} лиганды координированными к кластерному ядру (Рис. 3.4). Сигналы идеально совпадают с соответствующими рассчитанными изотопными распределениями, подтверждающими состав кластерных частиц.

Рис. 3.4. Фрагменты масс-спектра водного раствора комплекса 1

Циклическая вольтамперометрия комплекса **1** в водном растворе показала наличие одного квазиобратимого процесса окисления с потенциалом полуволны $E_{1/2} = 0,530$ В и $\Delta E = 0,155$ В (Рис. 3.5). Этот процесс может соответствовать окислению кластерного ядра.

Рис. 3.5. Циклическая вольтамперограмма водного раствора комплекса 1

На ЯМР-спектрах ¹³С и ¹⁴N для комплекса [{Re₄(μ_3 -CCN)₄}(CN)₁₂]⁸⁻, записанных в D₂O, наблюдается три (δ = 137, 144 и 189 м.д.) и два (δ = -165 и -67 м.д.) сигнала соответственно (Рис. 13). Предыдущие данные о химических сдвигах атомов углерода в

лигандах (μ_3 -CCN)³⁻ в соединениях Ba₅[TaN₄][C₂N] [153], [durene(CH₂bimynBu)₂Hg₂(CCN)Hg₂Br₅] [155] и [{W₆(μ_4 -O)₂(μ_3 -CCN)₄}(CN)₁₆] [152] хорошо коррелируют с данными, полученными для [{Re₄(μ_3 -CCN)₄}(CN)₁₂]⁸⁻ (Таблица 3.1). Химические сдвиги сигналов атомов <u>C</u>CN³⁻ лежат в диапазоне 164,4–189,3 м.д., а химические сдвиги сигналов атомов <u>C</u>CN³⁻ находятся в интервале 113,2–144,2 м.д. Различия между значениями химических сдвигов можно объяснить индивидуальными различиями между соединениями, а также различными условиями измерений. Соединения [{W₆(μ_4 -O)₂(μ_3 -CCN)₄}(CN)₁₆]¹⁰⁻ и [Re₄(μ_3 -CCN)₄(CN)₁₂]⁸⁻ были исследованы в растворах D₂O, в то время как [durene(CH₂bimynBu)₂Hg₂(CCN)Hg₂Br₅] исследовали в растворе CDCl₃, а Ba₅[TaN₄][C₂N] – в твердом состоянии.

Рис. 3.6. ЯМР-спектры ¹³С и ¹⁴N для комплекса K₈[{Re₄(CCN)₄}(CN)₁₂] в D₂O

Таблица 3.1.

Соединение	Хим. сдвиги атомов углерода CCN ³⁻ , м.д.
$[\text{Re}_4(\mu_3\text{-}\text{CCN})_4(\text{CN})_{12}]^{8-}$	144,20 и 189,34
$[\{W_6(\mu_4-O)_2(\mu_3-CCN)_4\}(CN)_{16}]^{10-}$	138,45 и 167,88
Ba ₅ [TaN ₄][C ₂ N]	128,4 и 164,4
[durene(CH ₂ bimynBu) ₂ Hg ₂ (CCN)Hg ₂ Br ₅]	113,2 и 187,6

Значения химических сдвигов ¹³С для комплексов, содержащих ССN³⁻

3.1.2.1. Предположительная схема образования лиганда CCN³⁻

Интересно отметить, что полученный комплекс с ядром {Re₄(µ₃-CCN)₄} является металлоорганическим, хотя никаких органических исходных соединений не было использовано при его синтезе. Таким образом, лиганды (µ₃-CCN)³⁻ образуются в ходе

реакции из цианид-ионов. Чтобы пролить свет на возможные пути реакции получения $[{Re_4(\mu_3-CCN)_4}(CN)_{12}]^{8-}$, мы исследовали побочные продукты и предложили механизм образования лиганда (μ_3 –CCN)³⁻. Добавление воды к реакционной смеси приводило к растворению кластерного продукта, а также избытка КСN. Оставшееся нерастворимое твердое вещество исследовали с помощью РФА, ЭДС и ИК-спектроскопии. Основываясь на данных проведенных анализов, мы можем утверждать, что в ходе реакции образуются соединения с одинарными и двойными связями CN (в частности, цианамид и парациан), которые могут образовывать полимерные комплексы с избытком рения различного состава и строения. В соответствии с этим схему реакции можно представить следующим образом:

Рис. 3.7. Предположительная схема образования лиганда CCN³⁻

Реакция начинается с образования связи Re(III)–CN с последующим образованием связи С–С между координированными и свободными цианид-ионами. Это приводит к образованию нестабильного комплекса со связью С–С, который совершает серию окислительно-восстановительных переходов: I) внутримолекулярный перенос одного электрона от металла на внутренний атом С, приводящий к образованию радикала; II) восстановление внутреннего атома С с образованием аниона CCN^{3–} с одновременным высвобождением цианамид-аниона; III) одноэлектронное восстановление центрального атома углерода свободной группой CN[–]. В результате этих процессов Re(III) окисляется до Re(IV). Для завершения этого механизма реакции требуется один дополнительный электрон от внешнего источника, который представляет собой свободный цианид, окисляющийся до дициана.

Вскрытие ампулы после синтеза сопровождалось хлопком, вызванным повышенным давлением при комнатной температуре, что может свидетельствовать о выделении дициана в реакции. Поскольку перед герметизацией ампула была вакуумирована и все

реагенты были тщательно высушены, только газообразные продукты реакции могут создавать повышенное давление. Принимая во внимание большую разницу в молярных массах Re и CN и возможную полимеризацию дициана, количество образующегося таким образом дициана невелико, что позволяет проводить синтез в кварцевых ампулах, избегая взрыва.

3.1.2.2. Описание кристаллической структуры

Согласно структурным данным, соединение 1 кристаллизуется в ромбической сингонии (Пр. гр. Pnna). Кристаллическая структура соединения включает в себя кластерный анион [${Re_4(\mu_3-CCN)_4}(CN)_{12}$]⁸⁻ (Рис. 3.2), девять катионов K⁺, один ион CN⁻ и две молекулы некоординированной воды. Наиболее близко строение аниона в 1 напоминает строение тетраэдрических халькоцианидных комплексов [{Re₄Q₄}(CN)₁₂]ⁿ⁻ (Q = S²⁻, Se²⁻, Te²⁻) [105, 156, 157]. Это типичный 12-электронный кластерный комплекс, имеющий 6 двухэлектронных связей металл-металл, однако длины связей Re-Re (2,6864(3)-2,7002(6) Å) показывают заметное сокращение (примерно на 0,05-0,20 Å) по сравнению со значениями, наблюдаемыми в вышеупомянутых соединениях. К каждой грани тетраэдра Re4 координирован тригонально-пирамидальным образом µ₃мостиковый лиганд CCN³⁻ с расстоянием Re-C_{CCN} от 2,053(9) до 2,251(9) Å. Геометрические параметры лигандов µ₃-ССN³⁻ в двух симметрично-независимых лигандах хорошо соответствуют тем, о которых сообщалось ранее [152-155]; длины связей С-С и С-N составляют 1,396(9) и 1,366(10), и 1,166(10) и 1,143(9) Å соответственно.

3.1.3. Пниктоцианидные кластерные комплексы рения

Далее было решено добавить элементы 15 группы (P, As, Sb, Bi) в систему ReI₃/CN⁻. Первым тетраэдрического примером пниктогенсодержащего кластерного комплекса рения, который МЫ получили, является Na₈[{Re₄(PO)₃(PO₂)}(CN)₁₂] (2), выделенный из реакции, между трииодидом рения, цианидом натрия и красным фосфором при 500°С (Рис. 3.8) [158]. Полученное соединение имеет в своем составе µ3-мостиковых лиганда PO^{3–}. три координированных фосфором и один лиганд РО₂-,

Рис. 3.8. Строение комплекса [{Re₄(PO)₃(PO₂)}(CN)₁₂]⁸⁻

который к двум атомам металла координирован фосфором, а к одному – кислородом. Элементный анализ хорошо согласуется с формулой Na₈[{Re₄(PO)₃(PO₂)}(CN)₁₂]·15H₂O, а порошковая дифрактограмма вещества соответствует рассчитанной из структурных данных, что говорит о фазовой чистоте полученного соединения (Рис. П5). В ИК-спектре помимо колебаний воды и цианидных лигандов наблюдаются колебания v(P–O–Re) 922 см⁻¹ и v(P=O) 1090 см⁻¹. ЯМР-спектр ³¹P (Рис. 3.9) содержит 4 сигнала, относящихся к четырем атомам фосфора в кластерном ядре: сигнал на 3,2 м.д. соответствует фосфору в лиганде μ_3 –PO₂^{3–}, тогда как сигналы на –4,9, –5,0 и –5,6 м.д. соответствуют атомам фосфора в лигандах μ_3 –PO^{3–}.

Рис. 3.9. ЯМР-спектр ³¹Р для комплекса Na₈[{Re₄(PO)₃(PO₂)}(CN)₁₂] в D₂O

Выход соединения 2 был невысок (42%), и мы попытались его увеличить, варьируя условия реакции. Повысив температуру до 550°С, нам удалось увеличить выход до ~50%, однако цвет полученных кристаллов был ярко-желтый (в то время как кристаллы соединения 2 имеют темнокрасный цвет). Определив структуру желтых кристаллов методом РСА, было обнаружено, что при 550°С происходит образование комплекса Na₈[{Re₄(PO)₄}(CN)₁₂] (**3**) [159]. Его строение (Рис. 3.10) аналогично строению комплекса **2**, однако к каждой грани тетраэдра Re₄ координирован μ_3 -

Рис. 3.10. Строение комплекса [{Re₄(PO)₄}(CN)₁₂]⁸⁻

мостиковый лиганд PO^{3–}, образуя кластерное ядро {Re4(PO)4}⁴⁺. Для подтверждения фазовой чистоты выделенного соединения **3** была записана порошковая дифрактограмма в интервалах углов 20 5–50°. Согласно данным рентгенофазового анализа (Puc. Пб) полученное соединение не содержало кристаллических примесей, а соответствие состава соединения формуле Na₈[{Re4(PO)4}(CN)₁₂]·18H₂O·MeOH подтверждалось данными элементного анализа. Также стоит отметить, что в ИК-спектре отсутствовали колебания PO₂-группы (Puc. 3.11). Таким образом, есть все основания полагать, что при 550°C комплекс [{Re4(PO)₃(PO₂)}(CN)₁₂]^{8–} не образуется.

Рис. 3.11. ИК-спектры Na₈[{Re₄(PO)₃(PO₂)}(CN)₁₂] (черная линия) и Na₈[{Re₄(PO)₄}(CN)₁₂] (красная линия)
Путем реакции иодида рения (III), цианида калия и мышьяка при 550°С был получен комплекс K₈[{Re₄As₂(AsO)₂}(CN)₁₂]·12H₂O (4), содержащий в кластерном ядре атомы мышьяка (Рис. 3.12) [158]. В данном соединении µ3-мостиковыми лигандами являются два лиганда As³⁻ и два – AsO³⁻ (каждый лиганд координирован к трем атомам рения мышьяком по грани тетраэдра). В ИК-спектре присутствует пик, относящийся к колебаниям As-O на 803 см⁻¹. Элементный анализ хорошо согласуется с приведенной формулой, а порошковая дифрактограмма вещества соответствует

Рис. 3.12. Строение комплекса [{Re₄As₂(AsO)₂}(CN)₁₂]⁸⁻

рассчитанной из структурных данных, что говорит о фазовой чистоте полученного соединения (Рис. П7).

Варьирование температуры не приводило к образованию новых соединений, как было в случае с фосфором, и во всех реакциях происходило образование одного и того же продукта. Температура 550°С является оптимальной и была определена путем проведения серии экспериментов при температурах 400–700°С с шагом в 50°С. Повышение температуры до 600°С и выше приводит к образованию нерастворимого аморфного порошка, а при более низкой температуре выход продуктов значительно снижается. Использование As₂O₃ вместо As и замена катиона K⁺ на Na⁺ или Cs⁺ в системе ReI₃–As–KCN, также не приводит к новым продуктам, и во всех реакциях происходит образование комплекса [{Re₄As₂(AsO)₂}(CN)₁₂]^{8–}. Таким образом, можно сделать заключение, что образование данной формы не зависит от типа катиона и источника мышьяка.

Остановимся подробнее на лигандах AsO^{3-} , PO^{3-} и PO_2^{3-} . В литературе встречаются крайне нестабильные фосфиноксид H₃PO [160] и арсиноксид H₃AsO [161], что позволяет нам говорить о лигандах PO^{3-} и AsO^{3-} . Данные лиганды могут быть описаны как депротонированные фосфиноксид и арсиноксид (Рис. 3.13), которые стабилизируются за счет координации к металлоцентрам. PO_2^{3-} можно рассматривать как депротонированную фосфорноватистую кислоту (Рис. 3.13), так как координация лиганда к одному атому рения происходит через кислород. Интересным фактом является то, что в полученных

комплексах в кластерное ядро входят кислородсодержащие лиганды, хотя никаких источников кислорода использовано не было. Но, к сожалению, точно сказать на какой стадии происходит их формирование не представляется возможным. Следует отметить, что лиганды PO_2^{3-} и AsO³⁻ не характерны не только для кластерной химии, но и для координационной химии в целом.

Рис. 3.13. Структурные фрагменты соединений 2-4 и соответствующие им молекулы

Циклическая вольтамперограмма соединения **2** (Рис. 3.14) показала три процесса окисления с потенциалами полуволны 0,31 В, 0,55 В и 1,06 В. Можно предположить, что данные переходы относятся к одноэлектронным окислениям [{Re₄(PO)₃(PO₂)}(CN)₁₂]^{8–}/[{Re₄(PO)₃(PO₂)}(CN)₁₂]^{7–}, [{Re₄(PO)₃(PO₂)}(CN)₁₂]^{7–/}[{Re₄(PO)₃(PO₂)}(CN)₁₂]^{6–} и [{Re₄(PO)₃(PO₂)}(CN)₁₂]^{6–}/[{Re₄(PO)₃(PO₂)}(CN)₁₂]^{6–} [{Re₄(PO)₃(PO₂)}(CN)₁₂]^{6–} [{Re₄(PO)₃(PO₂)}(CN)₁₂]^{7–}]{Re₄(PO)₃(PO₂)}(CN)₁₂]^{6–} [{Re₄(PO)₃(PO₂)}(CN)₁₂]^{6–}]{Re₄(PO)₃(PO₂)}(CN)₁₂]^{7–}]{Re₄(PO)₃(PO₂)}(CN)₁₂]^{7–}]{Re₄(PO)₃(PO₂)}[{Re₄(PO)₃(PO₂)}(CN)₁₂]^{7–}]{Re₄(PO)₃(PO₂)}(CN)₁₂]^{7–}]{Re₄(PO)₃(PO₂)}(CN)₁₂]^{7–}]{Re₄(PO)₃(PO₂)}(CN)₁₂]^{7–}]{Re₄(PO)₃(PO₂)}[{Re₄(PO)₃(PO₂)}(CN)₁₂]^{7–}]{Re₄(PO)₃(PO₂)}(CN)₁₂]^{7–}]{Re₄(PO)₃(PO₂)}[CN)₁₂]^{7–}]{Re₄(PO)₃(PO₂)}[CN)₁₂]^{7–}]{Re₄(PO)₃(

корню из скорости сканирования, что согласуется с теорией Рэндлса-Шевчика для процессов, контролируемых диффузией.

Рис. 3.14. Циклические вольтамперограммы соединений 2 (слева) и 4 (справа)

Получив довольно интересные результаты с фосфором и мышьяком, мы попробовали провести аналогичные реакции с сурьмой и висмутом, однако, как в случае металлических Sb и Bi, так и в случае оксидов Sb₂O₃ и Bi₂O₃, образовывались лишь нерастворимые аморфные черные порошки. Это может быть связано с низкой реакционной способностью данных элементов, проявляющих более сильные металлические свойства, чем P или As.

3.1.3.1. Описание кристаллических структур

Согласно данным рентгеноструктурного анализа кластерные комплексы 2–4 являются типичными примерами тетраэдрических цианидных комплексов типа $[{\text{Re}_{4}X_{4}}(\text{CN})_{12}]^{n-}$, содержащих 12 кластерных скелетных электронов и имеющих 6 двухэлектронных связей металл–металл [104, 105, 156, 157]. К каждой грани металлокластера Re4 координирован тригонально-пирамидальным образом μ_3 -мостиковый лиганд PO^{3–}, PO₂^{3–}, As^{3–} или AsO^{3–}, дополнительно каждый атом рения координирован тремя терминальными лигандами CN[–]. Таким образом, геометрия полученных соединений в целом аналогична геометрии многих других {Re4} комплексов. Для сравнения, длины связей Re–Re приведены в таблице 3.2, откуда видно, что эти значения хорошо согласуются с литературными данными для халькогенидных комплексов [105, 157].

Кластерный комплекс	d _{Re-Re} , Å
$[{Re_4(PO)_4}(CN)_{12}]^{8-}$	2,8329(5)-2,8694(5)
	среднее: 2,856(13)
$[{Re_4(PO)_3(PO_2)}(CN)_{12}]^{8-}$	2,8363(12)-2,8837(12)
	среднее: 2,860(19)
$[{Re_4As_2(AsO)_2}(CN)_{12}]^{8-}$	2,8328(6)-2,9210(6)
	среднее:2,870(8)
$[{Re_4S_4}(CN)_{12}]^{4-}[157]$	2,7487(3)-2,7580(4)
	среднее: 2,752(5)
$[{Re_4Se_4}(CN)_{12}]^{4-}[157]$	2,7876(3)-2,8048(3)
	среднее: 2,796(6)
$[{Re_4Te_4}(CN)_{12}]^{4-}[105]$	2,8707(7)-2,8898(5)
	среднее: 2,881(7)

Средние значения длин связей Re–Re в комплексах 2–4 и $[{Re4Q4}(CN)_{12}]^{4-}$ (Q = S, Se, Te)

Кластерные комплексы, содержащие μ_3 - и μ_4 -PO³⁻ лиганды, были описаны в нескольких статьях ранее [162, 163]. По литературным данным значения длин связей P–O лежат в узком диапазоне 1,48–1,52 Å. Эти значения хорошо согласуются с длинами связей P–O в комплексах **2** и **3**, которые лежат в интервале от 1,486(18) до 1,523(6) Å. Помимо лигандов PO³⁻ соединение **2** также содержит один уникальный μ_3 -мостиковый лиганд PO₂³⁻, координированный к двум атомам рения фосфором, а к одному – кислородом. Этот лиганд разупорядочен с одним из лигандов PO³⁻ по двум одинаково занятым позициям. Две связи P–O заметно различаются по длине: более длинное значение (1,58(3) Å) наблюдается для мостикового атома O, а более короткое значение (1,50(3) Å) – для «концевого» атома O и хорошо согласуется с расстояния Re–P – от 2,337(11) до 2,423(13) Å. Хотя мостиковый лиганд PO₂³⁻, насколько нам известно, не описан в литературе, его геометрические параметры сопоставимы с данными, полученными для хорошо известного гипофосфитного аниона H₂PO²⁻, в составе солей [Mg(H₂O)₆](H₂PO₂)₂, Sr(H₂PO₂)₂, Pb(H₂PO₂)₂, Ba(H₂PO₂)₂, [Sn₂(H₂PO₂)₃]Вг и др. Например,

углы О–Р–О в данных соединениях находятся в диапазоне 116,8–120,1°, а расстояния Р– О–М составляют 1,478–1,530 Å [164-166].

Единственным примером пниктоген-содержащего тетраэдрического кластерного комплекса рения, который был описан в литературе до начала нашей работы, является полимер Re₄As₆S₃. Его структуру можно представить в виде кластерных фрагментов $\{\text{Re}_4\text{AsS}_3\}^{7+}$, соединенных звеньями [AsAs₄]^{7–} [167]. Однако, в этом соединении атом As случайным образом распределен по четырем позициям в кластерном ядре $\{\text{Re}_4\text{AsS}_3\}^{7+}$, и поэтому указанное усредненное расстояние Re–As/S не может использоваться для сравнения с нашими данными. Для расстояния As–O в лиганде AsO^{3–} также нет литературных данных.

Интересно отметить, что кристаллографические характеристики комплексов с мышьяком зависят от катиона [168]. Первое, на что можно обратить внимание – это то, что формула натриевой соли Na₈[{Re₄As_{1,5}(AsO)_{2,5}}(CN)₁₂]·20,5H₂O (**5**) отличается от калиевой $K_8[{Re_4As_2(AsO)_2}(CN)_{12}]\cdot12H_2O$ (**4**) и цезий-калиевой $Cs_7K[{Re_4As_2(AsO)_2}(CN)_{12}]\cdot12H_2O$ (**6**). Таким образом, можно предположить, что соединение **5** содержит 75% анионов [{Re₄As₂(AsO)₂}(CN)₁₂]^{8–} и 25% анионов [{Re₄(AsO)₄}(CN)₁₂]^{8–}. Кроме того, можно отметить, что увеличение ионного радиуса катиона приводит к повышению симметрии кристаллической решетки. В ряду Na – K – Cs сингония меняется от моноклинной к ромбической, а затем к тетрагональной.

В соединении 5 (Пр. гр. C2/c) все атомы находятся в общих позициях, в то время как центр кластерного аниона лежит на оси 2 порядка. Кластерное ядро комплекса содержит два кристаллографически независимых атома рения, два атома мышьяка и два атома кислорода, один из которых заселен на 25%. В соединении 4 (Пр. гр. $P4_2/m$) все атомы находятся в общих позициях, в то время как центр кластерного аниона лежит на порядка. инверсионной оси 4 Кластерное ядро комплекса имеет ОДИН кристаллографически независимый атом рения, один атом мышьяка и один атом кислорода с заселенностью 50%. В соединении 6 (Пр. гр. *Стст*) через центр кластерного ядра проходят две перпендикулярных плоскости m, каждая из которых делит кластерное ядро пополам. Первая плоскость проходит через атомы O-As-Re-C-N-N-C-Re-As-O, вторая – через As-Re-C-N-N-C-Re-As. Все остальные атомы находятся в общих позициях. Кластерное ядро комплекса имеет два кристаллографически независимых атома рения, два атома мышьяка и один атом кислорода. Кристаллическая структура всех соединений

включает в себя кластерный анион, восемь катионов и п молекул некоординированной воды (n = 20,5 для Na, n = 12 для Cs/K и K).

Среди расстояний Re–As можно выделить несколько относительно длинных связей 2,4974(7)–2,5091(9) Å с лигандами As³⁻ и более короткие связи 2,4308(5)–2,4522(5) Å с лигандами AsO³⁻. Что касается расстояний Re–(As/AsO) для лигандов с частичной заселенностью атомов кислорода, то их значения 2,4676(7)–2,4832(11) Å находятся в интервале между Re–As и Re–AsO, причем при увеличении заселенности кислорода расстояние Re–(As/AsO) уменьшается. Длины связей As–O практически не зависят от заселенности кислорода и составляют от 1,631(4) до 1,672(4) Å, что примерно на 0,15 Å длиннее, чем расстояние P–O.

3.1.4. Халькопниктоцианидные кластерные комплексы рения

3.1.4.1. Комплексы с мышьяком

Практически все кластерные соединения типа { M_4X_4 }, описанные до начала данной работы, содержат один тип μ_3 -мостиковых лигандов в кластерном ядре Однако, как было упомянуто выше, в ходе изучения литературы было обнаружено, что существует тетраэдрический кластерный комплекс рения состава Re₄As₆S₃ [167], содержащий смешанные внутренние лиганды As/S. Данное соединение имеет полимерную структуру и может быть представлено в виде кластерных фрагментов {Re₄AsS₃}⁷⁺, соединенных звеньями [AsAs4]⁷⁻, что демонстрирует возможность образования комплексов с двумя типами внутренних лигандов. Поэтому нами были предприняты попытки синтезировать

смешаннолигандные комплексы рения, для чего была исследована система ReI₃–As–халькоген–КСN.

Реакция ReI₃ + As + Q + KCN (Q = S, Se) при 550°С (соотношение As:Q = 1:1) привела к образованию красных поликристаллических расплавов. Растворив расплавы в воде и проведя кристаллизацию путем диффузии паров MeOH в водный раствор комплекса, были получены комплексы состава $K_7[{Re_4As_3Q}(CN)_{12}] \cdot nH_2O$ (7, Q = S, n = 10; 8, Q = Se, n = 9,5; Рис. 3.15) [169].

Рис. 3.15. Строение комплексов [{Re₄As₃Q}(CN)₁₂]⁷⁻

Оказалось неожиданным, что изменение соотношения As:Q и условий синтеза не приводило к образованию новых соединений, и во всех случаях были получены кластеры с ядром $\{\text{Re}_4\text{As}_3\text{Q}\}^{5+}$. Дальнейшее изменение условий реакции показало, что при замене смеси As и S на сульфид As₂S₃ происходит образование комплекса с кластерным ядром $\{\text{Re}_4\text{As}_2\text{S}_2\}^{6+}$, выделенного в виде соли $K_6[\{\text{Re}_4\text{As}_2\text{S}_2\}(\text{CN})_{12}]\cdot 3,5\text{H}_2\text{O}$ (9) [169]. (Рис. 3.16)

7–9 хорошо

воде,

что

Соединения

В

стабильны

Рис. 3.16. Строение комплекса [{Re₄As₂S₂}(CN)₁₂]⁶⁻

неизменностью спектров электронного поглощения, записанных для свежеприготовленных растворов и для растворов, выдержанных в течение 1 месяца. Согласно данным рентгенофазового анализа все полученные соединения не содержат кристаллических примесей (Рис. П8–П10). Однако было установлено, что повышение температуры с 550°С до 600°С приводит к образованию небольших количеств известных октаэдрических кластеров $K_4[{Re_6Q_8}(CN)_6]$ (Q = S, Se) в качестве побочных продуктов. Можно предположить, что относительно низкая температура синтеза (550°С) является ключевым фактором, определяющим селективное получение смешаннолигандных кластеров.

растворимы и

подтверждается

В системе ReI₃/As/Te/KCN наблюдается иная ситуация. Так, реакция ReI₃, элементарных As и Te и КСМ при 550°С в течение 48 часов приводит к образованию смеси продуктов, из которой при перекристаллизации из воды был получен комплекс ${Re_4(AsO)_{2,25}As_{0,75}Te}^{5+}$, с кластерным ядром выделенный в виде калиевой соли К₇[{Re₄(AsO)_{2,25}As_{0,75}Te}(CN)₁₂] (**10**; Рис. 3.17) [170]. Для подтверждения фазовой чистоты комплекса была записана порошковая дифрактограмма в интервалах углов 20 5 – 50°, согласно которой, соединение не содержит кристаллических примесей

Рис. 3.17. Строение комплекса [{Re₄(AsO)_{2,25}As_{0,75}Te}(CN)₁₂]⁷⁻

(Рис. П11). Элементный анализ также хорошо согласуется с формулой К7[{Re4(AsO)_{2,25}As_{0,75}Te}(CN)₁₂]·9H₂O.

Понять образование полученного соединения позволяет проведенный нами анализ данных ИК-спектроскопии. Были записаны ИК-спектры для комплекса, высаженного метанолом сразу же после растворения в воде, и комплекса, высаженного через 3 дня. Из спектров (Рис. 3.18) видно, что со временем интенсивность полосы колебаний AsO увеличивается относительно полосы CN. Таким образом, можно предположить, что аналогично ранее полученным комплексам состава K₇[{Re₄As₃Q}(CN)₁₂] (Q = S, Se) при 550°C образуется кластер K₇[{Re₄As₃Te}(CN)₁₂], при растворении которого в воде происходит частичное окисление лигандов As³⁻ до AsO³⁻ с образованием наиболее стабильной формы K₇[{Re₄(AsO)_{2,25}As_{0,75}Te}(CN)₁₂]·9H₂O. Повторная перекристаллизация не приводит к дальнейшему окислению оставшегося As³⁻, что подтверждается данными PCA.

Рис. 3.18. ИК-спектры К₇[{Re₄(AsO)_{3-x}As_xTe}(CN)₁₂]

3.1.4.2. Описание кристаллических структур

Соединение 7 кристаллизуется в ромбической сингонии (Пр. гр. *Pnma*). Независимая часть содержит три атома Re, три смешанные позиции As/S, семь CN-групп, шесть позиций катионов K⁺, четыре из которых полностью заняты, и шесть позиций сольватных молекул H₂O. Кластерный анион $[{Re_4As_3S}(CN)_{12}]^{7-}$ демонстрирует типичную геометрию кубанового кластерного ядра {M4Q4}, содержащего 12 КСЭ. Длины связей Re– Re изменяются в интервале 2,7935(8)–2,8129(6) Å при среднем значении 2,808(7) Å. Это хорошо коррелирует с типичными длинами связей Re–Re в халькоцианидах [{Re_4Se_4}(CN)_{12}]⁴⁻ [156], что указывает на близкую электроотрицательность лигандов Se²⁻ и As³⁻. Измеренный интервал длин связей Re–(As/S) составляет 2,462(2)–2,492(2) Å со

средним значением 2,475(10) Å, что примерно на 0,1 Å больше, чем длина связи Re–S в кластерном ядре {Re₄S₄}. С другой стороны, эти значения хорошо согласуются с длинами связей Re–(As/S), указанными для октаэдрического кластера [{Re₆S₆As₂}(PPr₃)₆], где внутренние лиганды As^{3–} и S^{2–} занимают одну позицию [122].

Соединение **8** изоструктурно комплексу **7**. Наблюдаемые расстояния Re–(As/Se) лежат в интервале 2,477(2)–2,497(2) Å со средним значением 2,488(6) Å. Расстояния Re– Re демонстрируют незначительное удлинение по сравнению с комплексом **7** и находятся в диапазоне 2,8047(11)–2,8223(8) Å при среднем значении 2,818(7) Å.

Соединение **9** кристаллизуется в моноклинной сингонии (Пр. гр. $P2_1/n$). Независимая часть включает все атомы кластерного аниона [{Re₄As₂S₂}(CN)₁₂]⁶⁻, шесть полностью занятых позиций катионов K⁺ и четыре позиции сольватных молекул H₂O. Атомы As и S полностью разупорядочены между четырьмя позициями. Геометрия кластера аналогична аниону [{Re₄As₃S}(CN)₁₂]⁷⁻. Интервал длин связей Re–(As/S) составляет 2,3871(8)–2,4801(5) Å при среднем значении 2,44(3) Å. Укорочение этих связей по сравнению с таковыми для кластера [{Re₄As₃S}(CN)₁₂]⁷⁻ коррелирует с изменением соотношения As : S. Расстояния Re–Re находятся в интервале 2,7674(2)– 2,7950(2) Å со средним значением 2,78(1) Å.

В литературе ранее был описан тетраэдрический кластер рения $Re_4As_6S_3$, содержащий внутренние лиганды As^{3-} и S^{2-} в кластерном ядре { Re_4AsS_3 } [167]. Как и в случае соединений 7–9, атомы As и S разупорядочены по четырем позициям внутренних лигандов вокруг металлокластера { Re_4 }. Средняя длина связи $Re_-(As/S)$ в этом соединении составляет 2,410(2) Å. Это значение хорошо согласуется с соответствующими длинами связей, обнаруженными в ядрах { Re_4As_3S } и { $Re_4As_2S_2$ } в структурах соединений 7 и 8 соответственно. Из наблюдаемых длин связей можно сделать вывод, что увеличение отношения As/S в кластерном ядре приводит к увеличению среднего расстояния $Re_-(As/S)$.

Соединение 10 кристаллизуется в триклинной сингонии (Пр. гр. *P-1*). Катионная часть представлена катионами калия, которые располагаются В девяти кристаллографически неэквивалентных позициях, пять из которых полностью заселены, а _ заселены частично. Независимая часть кластерного четыре аниона $[{Re_4(AsO)_{2,25}As_{0.75}Te}(CN)_{12}]^{7-}$ содержит четыре атома рения, один атом теллура, три атома мышьяка, три атома кислорода и 12 СN-групп. Кристаллографические позиции

атомов кислорода двух лигандов AsO³⁻ полностью заселены, в то время как для третьего лиганда позиция заселена на 25%. Длины связей Re-Re изменяются в интервале 2,8702(4)-2,9142(4) Å при среднем значении 2,89(1) Å и демонстрируют удлинение на 0,07 Å по сравнению с комплексами 7 и 8, что объясняется большим ионным радиусом Те, а также влиянием лигандов AsO³⁻. Длина связи Re–Te изменяется в интервале от 2,6464(5) до 2,6534(5) со средним значением 2,649(4) и увеличивается на 0,02 Å по сравнению с комплексом $K_4[{Re_4Te_4}(CN)_{12}]$ ·5H₂O, что можно объяснить влиянием лигандов AsO³⁻. Расстояния Re–AsO для лигандов с полной и частичной заселенностью атомов кислорода 2,4321(7)-2,4427(7) и 2,4985(8)-2,5014(8) согласуются с таковыми в ядре {Re₄As₂(AsO)₂}, которые составляют 2,4308(5)–2,4522(5) Å и 2,4676(7)–2,4832(11) Å соответственно.

3.1.4.3. Комплексы с сурьмой

В продолжение исследований в области получения смешаннолигандных комплексов, были изучены реакции $\text{ReI}_3 + \text{Sb} + \text{Q} + \text{KCN}$ (Q = S, Se; соотношение Sb:Q = 1:1) при температуре 500° C. После перекристаллизации продуктов реакции из воды были выделены два новых водорастворимых тетраэдрических кластера

 $K_5[{Re_4S_3(SbO_3)}(CN)_{12}] \cdot 7H_2O$ (11) $K_5[{Re_4Se_3(SbO_3)}(CN)_{12}] \cdot 3H_2O$ (12)co смешаннолигандными кластерными ядрами $\{\text{Re}_{4}\text{S}_{3}(\text{SbO}_{3})\}^{7+}$ ${Re_4Se_3(SbO_3)}^{7+}$, И а ИХ кристаллическая структура определена с помощью

Рис. 3.19. Строение комплексов $[{Re_4Q_3(SbO_3)}(CN)_{12}]^{5-}(Q = S, Se)$

рентгеноструктурного анализа (Рис. 3.19). Как и в случае с мышьяком, варьирование соотношения Sb:халькоген не приводит к получению новых кластеров.

И

Для подтверждения состава полученных соединений были записаны масс-спектры для водных растворов (Рис. 3.20). Было обнаружено, что наиболее интенсивные сигналы $K_3[{Re_4Q_3(SbO)}(CN)_{12}]^{2-}$, относятся формам $K_{2}[{Re_{4}Q_{3}(SbO)}(CN)_{10}]^{-},$ к K₂[{Re₄Q₃(SbO)}(CN)₁₂]³⁻. Таким образом, можно предположить, что более точной формулой для лиганда $(SbO_3)^{3-}$ является $(SbO(H_2O)_2)^{3-}$. Аналогично AsO³⁻ данный лиганд может быть описан как депротонированный стибиноксид, к которому дополнительно

координированы две молекулы воды. Таким образом, общую формулу полученных комплексов можно записать как $K_5[{Re4Q_3(SbO(H_2O)_2)}(CN)_{12}] (Q = S, Se)$. Отметим, что соединения, описанные в этой работе, являются первыми примерами комплексов с лигандами $(SbO(H_2O)_2)^{3-}$.

Рис. 3.20. Фрагменты масс-спектров комплексов 11 (слева) и 12 (справа)

В ИК-спектрах комплексов **11** и **12** (Рис. 3.21) полосы валентных колебаний CNгрупп приходятся на 2100 см⁻¹. Кроме того, наблюдаются полосы на ~990 см⁻¹ и ~550 см⁻¹, которые можно отнести к деформационным и валентным колебаниям лиганда (SbO(H₂O)₂)^{3–}, согласно литературным данным для иона Sb(OH)^{6–} [171, 172]. По данным РФА оба соединения являются однофазными, что говорит об отсутствии кристаллических примесей (Рис. П12–П13).

Рис. 3.21. ИК-спектры комплексов 11 и 12

Так как в реакции $ReI_3 + Sb + S/Se + KCN$ образуются комплексы с кислородсодержащим лигандом $(SbO(H_2O)_2)^{3-}$, мы предположили, что замена металлической сурьмы на оксид Sb_2O_3 приведет к увеличению выходов реакций.

В реакции с серой как и в случае металлической сурьмы образовывался кластер $[{\text{Re}_4\text{S}_3(\text{SbO}(\text{H}_2\text{O})_2)}(\text{CN})_{12}]^{5-}$, но его выход практически не изменялся. В то же время в реакции с селеном выход увеличился почти на 20% (с 43% до 62%), однако, порошковая дифрактограмма продукта не совпадала с рассчитанной из структурных данных для комплекса K₅[{Re₄Se₃(SbO(H₂O)₂)}(CN)₁₂]. Кроме того, в ИК-спектре отсутствовали колебания от лиганда на 990 см⁻¹ и 550 см⁻¹ (Рис. 3.22). Таким образом, можно заключить, что происходит образование нового соединения.

Рис. 3.22. Порошковая дифрактограмма (слева) и ИК-спектр (справа) комплекса, полученного в реакции с Sb₂O₃, в сравнении с данными для **12**

Определив кристаллическую структуру методом РСА, мы обнаружили, что в системе ReI₃/Sb₂O₃/Se/KCN образуется комплекс K₅[{Re₄Se₃Sb}(CN)₁₂] (**13**) с ядром {Re₄Se₃Sb}⁷⁺ (Рис. 3.23) [173]. Состав ядра был подтверждён с помощью данных масс-спектрометрии, согласно которым масс-спектр водного раствора комплекса (Рис. 3.24) содержит большое число сигналов, соответствующих аддуктам кластерного аниона $[{Re_4Se_3Sb}(CN)_{12}]^{5-}$. Кроме того, порошковая дифрактограмма вещества хорошо соответствовала рассчитанной из структурных данных (Рис. П14),

Рис. 3.23. Строение комплекса [{Re₄Se₃Sb}(CN)₁₂]⁵⁻

что говорит о фазовой чистоте полученного соединения и отсутствии примеси комплекса с лигандом (SbO(H₂O)₂)³⁻.

Рис. 3.24. Фрагмент масс-спектра водного раствора комплекса 13

3.1.4.4. Комплексы с висмутом

Следующим этапом нашей работы был переход к реакциям с висмутом. При взаимодействии ReI₃ с Bi, S или Se и избытком КСN происходило образование халькогенидных комплексов $K_4[{Re_4Q_4}(CN)_{12}]$ (Q = S, Se), а висмут оставался в металлическом состоянии. Однако, реакция ReI₃ + Bi₂O₃ + Se + KCN привела к другому продукту. В этом случае образовалась смесь двух комплексов: $[{Re_4Se_3Bi}(CN)_{12}]^{5-}$ (Puc. 3.25) и $[{Re_4Se_4}(CN)_{12}]^{4-}$. Добавляя CsCl к реакционной смеси, нам удалось отделить большую часть халькогенидного комплекса из-за его более низкой растворимости в

Рис. 3.25. Строение аниона [{Re₄Se₃Bi}(CN)₁₂]⁵⁻

воде, а из оставшегося раствора путем диффузии метанола в водный раствор кластера получить монокристаллы для цезиевой соли $Cs_{4,7}[{Re_4Se_{3,3}Bi_{0,7}}(CN)_{12}] \cdot H_2O$ (14), пригодные для рентгеноструктурного анализа [173]. Повторная перекристаллизация из воды привела к такому же результату. Масс-спектрометрия высокого разрешения комплекса в водном растворе показала смесь кластерных анионов [{Re_4Se_3Bi}(CN)_{12}]⁵⁻ и

[{Re₄Se₄}(CN)₁₂]⁴⁻, которые могут диссоциировать в процессе ионизации, теряя терминальные лиганды CN-; при этом все внутренние лиганды остаются координированными металлокластеру. к Сигналы полностью совпадают с соответствующими рассчитанными изотопными распределениями, подтверждающими состав кластерных единиц (Рис. 3.26). Элементный анализ хорошо соответствует формуле ΡΦΑ $Cs_{4,7}[{Re_4Se_{3,3}Bi_{0,7}}(CN)_{12}] \cdot H_2O,$ а согласно соединение содержит не кристаллических примесей (Рис. П15).

Рис. 3.26. Фрагмент масс-спектра водного раствора соединения 14

Следует отметить, что с увеличением содержания селена в реакционной смеси равновесие смещалось в сторону образования халькогенидного комплекса. В то же время увеличение содержания оксида висмута (III) не приводило к образованию большего количества [{Re₄Se₃Bi}(CN)₁₂]^{5–}.

При взаимодействии ReI₃ с оксидом висмута, серой и избытком KCN, как и в реакции с селеном, происходило образование смеси комплексов. При упаривании водного раствора с добавлением хлорида цезия был выделен

Рис. 3.27. Фрагмент масс-спектра водного раствора комплекса **15**

халькогенидный кластер [{Re₄S₄}(CN)₁₂]⁴⁻ в виде цезиевой соли, но при этом раствор оставался интенсивно окрашен. Нам не удалось получить монокристаллы пригодные для РСА для второго продукта, однако, основываясь на полученных результатах массспектрометрии, можно сделать вывод, что его формула Cs₅[{Re₄S₃Bi}(CN)₁₂] (**15**). Массспектр водного раствора полученной соли содержит только аддукты кластерного аниона [{Re₄S₃Bi}(CN)₁₂]⁵⁻ с катионами цезия, в то время как кластерных анионов другого состава обнаружено не было (Рис. 3.27).

3.1.4.5. Описание кристаллических структур

Согласно рентгеноструктурному анализу анионы в комплексах **11** (Пр. гр. *C2/c*), **12** (Пр. гр. *P2*₁/*m*), **13** (Пр. гр. *P2*₁/*n*) и **14** (Пр. гр. *Fmm2*) содержат тетраэдрическое кластерное ядро, в котором треугольные грани закрыты разными типами µ₃-мостиковых лигандов: S^{2-} , Se^{2-} , Sb^{3-} , $(SbO(H_2O)_2)^{3-}$, Bi^{3-} . Каждый атом рения дополнительно координирован тремя терминальными CN-группами, что в итоге приводит к следующим анионным формулам: [{Re4S₃(SbO(H₂O)₂)}(CN)₁₂]⁵⁻, [{Re4Se₃(SbO(H₂O)₂)}(CN)₁₂]⁵⁻, [{Re4Se₃(SbO(H₂O)₂)}(CN)₁₂]⁵⁻, [{Re4Se₃Sb}(CN)₁₂]⁵⁻ и [{Re4Se₃, 3Bi_{0,7}}(CN)₁₂]^{4,7-}. Геометрия кластерного ядра в указанных соединениях в целом аналогична геометрии, обнаруженной в ряде Re4-содержащих соединений, особенно в тетраэдрических халькоцианидных комплексах [Re4Q₄(CN)₁₂]⁴⁻ (Q = S, Se, Te) [99, 105, 156, 157].

В частности, длины связей Re–Re В $K_5[{Re_4Se_3Sb}(CN)_{12}]$ И Сs_{4,7}[{Re₄Se_{3,3}Bi_{0,7}}(CN)₁₂] составляют 2,8065(9)–2,8276(8) и 2,8081(16)–2,8123(16) Å соответственно, практически не проявляя зависимости от типа окружающих µ3-лигандов. Обнаружено, что в ядре {Re₄Se₃Sb}⁷⁺ лиганд Sb³⁻ разупорядочен по четырем кристаллографически различным µ₃-позициям с равной заселенностью 0,25. Следовательно, связи Re–Se и Re–Sb неотличимы друг от друга, а длины связей Re–Se/Sb находятся в диапазоне от 2,5126(16) до 2,5564(15) Å. Тем не менее хорошо видно, что эти значения выше по сравнению с типичными расстояниями Re-Se (~ 2,48 Å), наблюдаемыми в «незамещенном» анионе [Re4Se4(CN)12]⁴⁻.

В случае соединения Cs_{4,7}[{Re₄Se_{3,3}Bi_{0,7}}(CN)₁₂] лиганд Bi³⁻ также разупорядочен с лигандами Se²⁻ по трем μ_3 -позициям вокруг тетраэдра Re₄ с суммарной заселенностью висмута 0,7. Четвертая μ_3 -позиция полностью занята ионами Se²⁻. Длины связей Re–Se/Bi находятся в интервале 2,562(2)–2,591(3) Å и оказались длиннее, чем связи Re–Se 2,512(3)–2,526(5) Å в том же кластерном ядре. Интересно отметить, что анионы

[{Re4Se_{3,3}Bi_{0,7}}(CN)₁₂]^{4,7-} проявляют своего рода самоассоциацию, образуя «димеры», о чем свидетельствуют короткие контакты 3,492(5) Å между соседними Se/Bi вершинами (Рис. П47). Это можно объяснить слабым взаимодействием Se···Bi и/или Se···Se или просто эффектами упаковки кристаллов.

В соединениях K₅[{Re₄Q₃(SbO(H₂O)₂)}(CN)₁₂] (Q = S, Se) внутренние лиганды занимают строго определенные позиции, а длины связей Re–Re изменяются в зависимости от типа окружающих μ_3 -лигандов. Так, в сульфидном комплексе расстояния Re–Re для грани, к которой координирован лиганд (SbO(H₂O)₂), находятся в диапазоне от 2,8440(5) до 2,8626(5) Å и заметно длиннее остальных связей Re–Re в тетраэдре, которые составляют 2,7560(5)–2,7750(5) Å. Аналогичная ситуация наблюдается и для селенидного комплекса, где эти расстояния лежат в интервалах 2,8701(7)–2,8937(5) и 2,8082(7)– 2,8171(5) соответственно. Данное поведение можно объяснить большим ионным радиусом сурьмы по сравнению с серой или селеном.

Длины связей Re–Sb в обоих комплексах почти одинаковые и находятся в диапазоне от 2,7407(9) до 2,8006(7) Å. Расстояния Re–S и Re–Se, которые составляют 2,341(2)–2,358(2) Å и 2,4699(9)–2,4889(9) соответственно, хорошо согласуются с типичными расстояниями Re–Q (~2,35 Å, Q = S; ~2,48 Å, Q = Se), наблюдаемыми в «незамещенных» анионах [{Re4Q4}(CN)₁₂]^{4–} [156]. Расстояния Sb–O в полученных соединениях находятся в узком интервале от 1,996(6) Å до 2,016(8) Å, что заметно длиннее (на ~ 0,35 Å) длины связи As–O.

3.2. Модификация внутреннего лигандного окружения

3.2.1. Комплексы с мышьяком

3.2.1.1. Окисление и восстановление

Первым этапом работы по модификации внутреннего лигандного окружения было изучение взаимодействия комплекса $K_8[{Re_4As_2(AsO)_2}(CN)_{12}]$ (4) c 10% водным Получив пероксида водорода. раствором монокристаллы для продукта реакции и определив кристаллическую структуру методом РСА, было обнаружено, что оба лиганда As³⁻ окисляются до AsO^{3–}, при образуется этом соединение K₈[{Re₄(AsO)₄}(CN)₁₂] (**16**; Рис. 3.28) [158]. На дифрактограмме (Рис. порошковой П16) отсутствуют рефлексы от исходного комплекса, что

Рис. 3.28. Строение комплекса [{Re₄(AsO)₄}(CN)₁₂]⁸⁻

говорит о полном протекании реакции окисления. Следует отметить, что здесь идет не классическое окисление кластерного ядра, при котором сохраняется состав, но изменяется число кластерных скелетных электронов, а происходит окисление внутренних μ_3 -лигандов As³⁻ до AsO³⁻, с сохранением количества КСЭ. Таким образом, было показано, что, в отличие от традиционных халькогенидных тетраэдрических кластерных комплексов рения, в данном случае появляется возможность модификации внутреннего лигандного окружения.

Продолжив изучение возможности модификации внутренних лигандов данного комплекса, нам удалось восстановить все лиганды AsO^{3-} до As^{3-} . Для этого в ампулу помещали $K_8[{Re_4As_2(AsO)_2}(CN)_{12}]$ и избыток I₂, нагревали до 200°C и выдерживали при этой температуре 12 часов. Кристаллизация с добавлением CsCl приводила к образованию цезиевой соли Cs₈[{Re₄As₄}(CN)₁₂] (17). Таким образом, схему окислительно-восстановительных превращений комплекса $K_8[{Re_4As_2(AsO)_2}(CN)_{12}]$ можно представить следующим образом:

Рис. 3.29. Схема химического окисления и восстановления лигандов в комплексе [{Re₄As₂(AsO)₂}(CN)₁₂]⁸⁻

Для всех соединений были записаны ИК-спектры (Рис. 3.30), на которых мы можем видеть, что окисленный комплекс имеет наибольшую интенсивность полосы колебаний As–O (по отношению к полосе CN), в то время как для восстановленного комплекса эта полоса отсутствует.

Рис. 3.30. ИК-спектры комплексов 4, 16 и 17

3.2.1.2. Протонирование лигандов AsO³⁻

Также было показано, что помимо восстановления до As³⁻, лиганды AsO³⁻ в комплексе $[{Re_4As_2(AsO)_2}(CN)_{12}]^{8-}$ могут быть AsOH²⁻ протонированы ДО В реакции c концентрированной соляной кислотой, при этом образуется соединение $K_6[{Re_4As_2(AsOH)_2}(CN)_{12}]$ (18; Рис. 3.31). В кристаллической структуре наблюдалось данного комплекса заметное удлинение связи As–O: для лиганда AsO^{3–} эта длина составляла 1,7 Å, в то время как для лиганда AsOH²⁻ – 2,1 Å. Кроме того, число катионов уменьшилось с 8 до 6, что также подтверждается

 $[{Re_4As_2(AsOH)_2}(CN)_{12}]^{6-}$

данными элементного анализа и свидетельствует о протонировании лигандов. Также в ИК-спектре (Рис. 3.32) наблюдалось смещение колебаний As–O для комплекса $K_6[\{Re_4As_2(AsOH)_2\}(CN)_{12}]$ (720 см⁻¹) по сравнению с комплексом $K_8[\{Re_4As_2(AsO)_2\}(CN)_{12}]$ (822 см⁻¹).

Рис. 3.32. ИК-спектры К₈[{Re₄As₂(AsO)₂}(CN)₁₂] и К₆[{Re₄As₂(AsOH)₂}(CN)₁₂]

3.2.1.3. Описание кристаллических структур

Соединение K₈[{Re₄(AsO)₄}(CN)₁₂]·13H₂O (**16**) кристаллизуется в моноклинной сингонии (Пр. гр. $P2_1/c$). Независимая часть структуры содержит все атомы кластерного аниона [{Re₄(AsO)₄}(CN)₁₂]^{8–}, 8 позиций катионов K⁺ и 13 позиций сольватных молекул воды. Анион демонстрирует типичную геометрию кубанового кластерного ядра {M4Q4}, содержащего 12 КСЭ, в целом аналогичную геометрии [{Re₄As₂(AsO)₂}(CN)₁₂]^{8–}. Длины

связей Re–Re изменяются в интервале 2,9172(3) –2,9496(3) Å при среднем значении 2,940(11) Å, что на ~ 0,1 Å длиннее, чем в кластерном ядре {Re₄As₂(AsO)₂}. Расстояния As–O практически не отличаются от таковых в вышеописанных комплексах и лежат в диапазоне от 1,672(5) до 1,686(3) Å. Измеренный интервал длин связей Re–AsO составляет 2,4308(6)–2,4523(7) Å со средним значением 2,445(6) Å, что хорошо согласуется с расстояниями Re–AsO для лигандов с полной заселенностью атомов кислорода в кластерах [{Re₄As₂(AsO)₂}(CN)₁₂]^{8–} и [{Re₄(AsO)_{2,25}As_{0,75}Te}(CN)₁₂]^{7–}.

Соединение Cs₈[{Re₄As₄}(CN)₁₂]·26H₂O·2CsI (17) кристаллизуется в кубической сингонии (Пр. гр. *Fm-3m*). Независимая часть содержит один атом Re, один атом As, одну CN-группу, две позиции катионов Cs⁺, пять позиций сольватных молекул H₂O и одну позицию иона Г. Длины связей Re–Re и Re–As составляют 2,7655(13) Å и 2,485(2) Å соответственно. Расстояние Re–As согласуется с таковыми для ядра {Re₄As₂(AsO)₂}. Для сравнения, средние расстояния Re–Re для комплексов [{Re₄As₄}(CN)₁₂]^{8–}, [{Re₄As₂(AsO)₂}(CN)₁₂]^{8–} и [{Re₄(AsO)₄}(CN)₁₂]^{8–} приведены в таблице 3.3, откуда видно, что при замене каждых двух лигандов As^{3–} на AsO^{3–}, ребро тетраэдра Re4 удлиняется примерно на 0,1 Å.

Таблица 3.3.

Кластерный комплекс	d_{Re-Re} , Å
$[{Re_4As_4}(CN)_{12}]^{8-}$	2,766(1)
$[{Re_4As_2(AsO)_2}(CN)_{12}]^{8-}$	2,860(19)
$[{Re_4(AsO)_4}(CN)_{12}]^{8-}$	2,940(11)

Средние значения длин связей Re–Re в комплексах 4, 17 и 18

Соединение $K_6[\{Re_4As_2(AsOH)_2\}(CN)_{12}]\cdot 4,5H_2O$ (18) кристаллизуется в моноклинной сингонии (Пр. гр. $P2_1/m$). Независимая часть структуры содержит три атома рения, три атома мышьяка, два атома кислорода, семь CN-групп, шесть позиций катионов K^+ и три позиции сольватных молекул H₂O. Геометрия кластера в целом аналогична геометрии аниона $[\{Re_4As_2(AsO)_2\}(CN)_{12}]^{8-}$. Интервал длин связей Re–Re лежит в диапазоне 2,8173(9)–2,8402(8) Å со средним значением 2,837(10) Å. Расстояния Re–As и As–O составляют 2,45(1) и 2,09(3) Å соответственно. По сравнению с ядром $\{Re_4As_2(AsO)_2\}$, наблюдается незначительное сжатие металлоостова (~ 0,03 Å), в то же

время длины связей Re–As практически не отличаются от расстояний Re–AsO для лигандов с полной заселенностью атомов кислорода. Протонирование атомов кислорода приводит к удлинению связи As–O на 0,4 Å: для лиганда AsO^{3–} это расстояние составляет 1,7 Å, в то время как для лиганда AsOH^{2–} – 2,1 Å. Ранее уже было описано несколько примеров комплексов различных *d*-металлов с частицами μ_3 -AsOH, μ -As(OH)₂ и As(OH)₃ [174-177]. По литературным данным, значения длин связей As–O лежат в диапазоне 1,9 – 2,2 Å, что в целом согласуются с расстоянием As–O в комплексе [{Re₄As₂(AsOH)₂}(CN)₁₂]^{6–} (2,1 Å).

3.2.2. Смешаннолигандные комплексы

Для смешаннолигандных комплексов, полученных в данной работе, мы также попытались модифицировать внутреннее лигандное окружение путем окисления водным раствором пероксида Так, в реакциях с соединениями водорода. $K_7[{Re_4As_3Q}(CN)_{12}]$ (Q = S, Se), как и в случае с $K_8[Re_4As_2(AsO)_2](CN)_{12}]$, согласно данным PCA происходит полное окисление лигандов As³⁻ до AsO³⁻ (Рис. 3.33). В ИК-спектрах окисленных комплексов K₃Cs4[{Re4(AsO)₃S}(CN)₁₂] (19) и $K_7[{Re_4(AsO)_3Se}(CN)_{12}]$ (20)наблюдается появление колебаний AsO на 848 см⁻¹ для серного

Рис. 3.33. Строение комплексов [{Re4(AsO)₃Q}(CN)₁₂]^{7–} (Q=S, Se)

и 845 см⁻¹ для селенового кластера (Рис. П48). Порошковые дифрактограммы хорошо соответствуют рассчитанным из структурных данных (Рис. П17, П18), что говорит о фазовой чистоте полученных соединений и полном протекании реакции окисления.

В случае теллуридного комплекса $K_7[{Re4(AsO)_{2,25}As_{0,75}Te}(CN)_{12}]$ взаимодействие с раствором H_2O_2 также приводит к образованию полностью окисленной формы $[{Re4(AsO)_3Te}(CN)_{12}]^{7-}$ (21). В ИК-спектре наблюдается незначительное увеличение интенсивности полосы колебаний AsO относительно колебаний CN. Согласно данным РФА, полученное соединение также не содержит кристаллических примесей (Рис. П19).

Наиболее неожиданное поведение наблюдалось для комплекса с двумя арсенидными и сульфидными ДВУМЯ лигандами К₆[{Re₄As₂S₂}(CN)₁₂]. При добавлении к водному раствору кластера пероксида водорода, происходило изменение цвета раствора от красного к коричнево-зеленому. Получив монокристаллы, пригодные для РСА, и определив кристаллическую структуру, было обнаружено, что в данном случае образуется соединение $[{Re_4O_2S_2}(CN)_{12}]^{4-}$ (22) с кластерным ядром $\{\text{Re}_4\text{O}_2\text{S}_2\}^{8+}$ (Рис. 3.34). Можно

предположить, что реакция не заканчивается на стадии { $Re_4(AsO)_2S_2$ }, а происходит дальнейшее окисление лигандов AsO^{3-} с их последующим элиминированием и замещением на атомы кислорода.

Было обнаружено, что порошковая дифрактограмма выделенного продукта несколько не соответствует рассчитанной из структурных данных для комплекса **22**. Помимо необходимых рефлексов наблюдалась еще серия малоинтенсивных сигналов, по всей видимости, относящихся к другому соединению (Рис. 3.35).

Рис. 3.35. Порошковая дифрактограмма продуктов окисления K₆[{Re₄As₂S₂}(CN)₁₂] в сравнении с рассчитанной по структуре монокристалла **22** (* отмечены рефлексы, не соответствующие комплексу **22**)

Более детально рассмотрев полученное вещество под микроскопом, было обнаружено, что оно содержит кристаллы двух типов, которые незначительно отличались визуально. Согласно полученным результатам РСА было выявлено, что помимо тетраэдрического кластера с ядром $\{\text{Re}_4\text{O}_2\text{S}_2\}^{8+}$ в данной системе также происходит образование треугольного кластерного комплекса состава

Рис. 3.36. Строение комплекса $[{Re_3(\mu_3-S)(\mu-O)_2(\mu-SO_2)}(CN)_9]^{5-}$

 $Cs_{4,5}K_{0,5}[{Re_3(\mu_3-S)(\mu-O)_2(\mu-SO_2)}(CN)_9]$ (23; Рис. 3.36).

Нам не удалось выделить комплекс $[{Re_4O_2S_2}(CN)_{12}]^4$ в индивидуальном виде, вероятно, из-за реакции окисления $\{Re_4\} \rightarrow \{Re_3\}$, протекающей параллельно. Однако, было обнаружено, что нагревание раствора на плитке ($T = 120^{\circ}C$) в течение 10 минут при окислении K₆[{Re₄As₂S₂}(CN)₁₂] приводит к образованию треугольного кластера в чистом виде. В ИК-спектре 23 (Рис. 3.37) наблюдаются типичные колебания лиганда SO₂²⁻ на 1047 и 1173 см⁻¹, а также колебания Re–O–Re на 950 см⁻¹. Порошковая дифрактограмма вещества хорошо соответствует рассчитанной из структурных данных, что говорит об отсутствии каких-либо кристаллических примесей (Рис. П20).

Рис. 3.37. ИК – спектр комплекса 23

Кроме того, чистота продукта была подтверждена данными масс-спектрометрии, согласно которым экспериментальные сигналы идеально совпадают с соответствующими рассчитанными изотопными распределениями (Рис. 3.38).

Рис. 3.38. Фрагмент масс-спектра водного раствора 23

В литературе встречаются похожие кластеры $[{Re_3(\mu_3-S)(\mu-SO_2)(\mu-S)_2}Cl_6(PEt_3)_3]^-$ [86] и $[{Re_3(\mu_3-S)(\mu-SO_2)(\mu-S)_2}Cl_6(PMe_2Ph)_3]^-$ [87], которые образуются при окислении одного из S²⁻ лигандов в ядре ${Re_3(\mu_3-S)(\mu-S)_3}^{5+}$ до SO₂²⁻. Таким образом, можно предположить, что при окислении комплекса K₆[${Re_4As_2S_2}(CN)_{12}$] водным раствором H₂O₂ на первой стадии происходит замещение двух атомов мышьяка на атомы кислорода без разрушения металлокластера, а затем один из сульфидных лигандов окисляется до SO₂²⁻, при этом происходит отщепление одного атома рения и образуется треугольный комплекс с ядром {Re₃(μ_3 -S)(μ -O)₂(μ -SO₂)}⁴⁺ (Puc. 3.39).

Рис. 3.39. Схема двухстадийного окисления $K_6[{Re_4As_2S_2}(CN)_{12}]$ водным раствором H_2O_2

В отличие от полученных ранее кластеров с фосфиновыми лигандами, содержащих 8 кластерных скелетных электронов, В соединении $[{Re_3(\mu_3-S)(\mu-O)_2(\mu-SO_2)}(CN)_9]^{5-}$ число КСЭ равно 9. Таким образом, можно ожидать наличие, по крайней мере, одного окислительно-восстановительного процесса. Действительно, циклическая вольтамперограмма для кластера 23 (Рис. 3.40) содержит один электрохимический переход ($E_{1/2} = 0.055$ B). Площади

катодного и анодного пиков полученного перехода близки, однако, ΔE процесса составляет 0,126 В, что говорит о квазиобратимом характере электрохимической реакции. Данный переход можно отнести к одноэлектронному окислению кластерного ядра

 $\{\operatorname{Re}_{3}(\mu_{3}-S)(\mu-O)_{2}(\mu-SO_{2})\}^{4+} (9 \text{ KC} \ni) \leftrightarrow \{\operatorname{Re}_{3}(\mu_{3}-S)(\mu-O)_{2}(\mu-SO_{2})\}^{5+} (8 \text{ KC} \ni).$

Получив соединения $K_5[{Re_4Se_3(SbO(H_2O)_2)}(CN)_{12}]$ $K_5[{Re_4Se_3Sb}(CN)_{12}],$ ΜЫ задались вопросом, Sb³⁻ возможно ли окисление лигандов до $(SbO(H_2O)_2)^{3-}$. Добавив к водному раствору комплекса [${Re_4Se_3Sb}(CN)_{12}$]⁵⁻ пероксид водорода, мы обнаружили, что в данной реакции, как и в случае $[{Re_4As_2S_2}(CN)_{12}]^{6-}$ происходит изменение цвета раствора от красно-коричневого до коричневозеленого. При добавлении к раствору хлорида цезия спустя несколько часов наблюдалось выпадение

Рис. 3.41. Строение комплекса [{Re₄Se₃O}(CN)₁₂]⁴⁻

коричнево-зеленых игольчатых кристаллов, которые были использованы для PCA. Согласно полученным данным, в реакции [{Re₄Se₃Sb}(CN)₁₂]⁵⁻ с H₂O₂ лиганды Sb³⁻ замещаются на O²⁻ и образуется комплекс [{Re₄Se₃O}(CN)₁₂]⁴⁻ (Рис. 3.41). Отметим, что дальнейшее нагревание раствора не приводит к новым продуктам или разрушению кластера.

Позже было обнаружено, что лиганды (SbO(H₂O)₂)³⁻ и Bi³⁻ также замещаются на взаимодействии кластеров $[{Re_4Q_3(SbO(H_2O)_2)}(CN)_{12}]^{5-}$ кислород при и $[{Re_4Q_3Bi}(CN)_{12}]^{5-}$ (Q = S, Se) с водным раствором H₂O₂. При этом образуются $[{Re_4Q_3O}(CN)_{12}]^{4-},$ комплексы выделенные В виде цезиевых солей $Cs_{4}[{Re_{4}S_{3}O}(CN)_{12}]$ ·2H₂O (24) и $Cs_{4}[{Re_{4}Se_{3}O}(CN)_{12}]$ ·2H₂O (25). Порошковые дифрактограммы полученных соединений хорошо соответствуют рассчитанным из структурных данных (Рис. П21, П22), что говорит об их фазовой чистоте и полном протекании реакций замещения. Масс-спектры водных растворов 24 и 25 идентичны и содержат только аддукты кластерных анионов $[{Re_4Q_3O}(CN)_{12}]^{4-}$ (Q = S, Se) с катионами цезия (Рис. 3.42).

Рис. 3.42. Фрагменты масс-спектров комплексов 24 (слева) и 25 (справа)

3.2.2.1. Описание кристаллических структур

Соединение 19 кристаллизуется в моноклинной сингонии (Пр. гр. P21/m). таковой в комплексе $K_7[{Re_4As_3S}(CN)_{12}],$ Независимая часть аналогична за исключением того, что внутренние лиганды не разупорядочены и занимают строго $[{Re_4(AsO)_3S}(CN)_{12}]^{7-}$ Анион демонстрирует определенные позиции. немного искаженную геометрию по сравнению с типичным кубановым кластерным ядром {M₄Q₄}, содержащим 12 КСЭ. Так, расстояния Re-Re для грани, к которой координирован сульфидный лиганд, находятся в диапазоне от 2,8410(7) до 2,8411(7) Å и заметно короче остальных связей Re–Re в тетраэдре, которые лежат в интервале 2,9099(6)–2,9142(7) Å. В не окисленном комплексе эти расстояния изменяются от 2,7935(8) до 2,8129(6) Å. Таким образом, при окислении лигандов As³⁻ до AsO³⁻ происходит заметное увеличение геометрических размеров кластерного ядра. Измеренный интервал длин связей Re–S составляет 2,373(2)–2,378(3) Å, что хорошо согласуется с данными для халькоцианидных комплексов с ядром {Re₄S₄}. Расстояния Re–As и As–O составляют 2,4341(10)–2,4455(11) Å и 1,625(7) – 1,697(10) Å соответственно и практически совпадают со значениями для аниона [{Re₄(AsO)₃S}(CN)₁₂]^{8–}.

В соединении **20** (Пр. гр. *P-1*) независимая часть включает все атомы кластерного аниона [{Re₄(AsO)₃Se}(CN)₁₂]^{7–}, 9 позиций катионов K⁺ и 7 позиций сольватных молекул H₂O. Несмотря на то, что As и Se не различимы в PCA, внутренние лиганды в кластерном ядре {Re₄(AsO)₃Se}⁵⁺ занимают строго определенные позиции: каждый из трех атомов мышьяка связан с атомом кислорода, позиция которого полностью заселена. Расстояния As–O имеют типичные значения 1,647(12)–1,676(9) Å. Как и случае вышеописанного сульфидного комплекса, геометрия кластерного ядра искажена, но в гораздо меньшей степени. Так, расстояния Re–Re для грани, к которой координирован селенидный лиганд, варьируются от 2,8589(7) до 2,8627(7) Å и немного короче остальных связей в тетраэдре, которые составляют 2,9143(8)–2,9328(7) Å. Аналогично [{Re4(AsO)₃S}(CN)₁₂]^{7–} наблюдается «расширение» металлокластера от среднего расстояния Re–Re 2,78(1) Å в не окисленном кластере до 2,89(3) Å в окисленном. Длины связей Re–As и Re–Se находятся в диапазонах 2,4308(17)–2,4421(14) Å и 2,4753(13)–2,4955(14) Å соответственно и хорошо согласуются с данными для комплексов [{Re4Se4}(CN)₁₂]^{4–} [156] и [{Re4(AsO)₄}(CN)₁₂]^{8–}.

Соединение **21** кристаллизуется в триклинной сингонии (Пр. гр. *P-1*). Независимая часть включает все атомы кластерного аниона $[{Re_4(AsO)_3Te}(CN)_{12}]^{7-}$, восемь позиций занятых катионами K⁺ и Cs⁺ и шесть позиций сольватных молекул воды. В отличие от комплексов в серой или селеном геометрия металлокластера {Re_4} в кластерном ядре {Re_4(AsO)_3Te}⁵⁺ практически не искажена, а расстояния Re–Re лежат в диапазоне от 2,8895(5) до 2,9494(5) Å, что немного длиннее, чем в частично окисленном комплексе [{Re_4(AsO)_{2,25}As_{0,75}Te}(CN)_{12}]^{7-}, где длины связей Re–Re составляют 2,8702(4)–2,9142(4) Å. Связи Re–Te (2,6422(7)–2,6506(7) Å) практически не изменяются при окислении соединения с ядром {Re_4(AsO)_{2,25}As_{0,75}Te}^{5+}, в котором эти расстояния находятся в интервале от 2,6464(5) до 2,6534(5) Å. Длины связей Re–As и As–O имеют значения 2,4289(10)–2,4531(10) Å и 1,652(7)–1,672(7) Å соответственно и хорошо согласуются со значениями, наблюдаемыми как в [{Re_4(AsO)_3Q}(CN)_{12}]⁷⁻ (Q = S, Se), так и в [{Re_4(AsO)_4}(CN)_{12}]⁸⁻.

Соединение **22** кристаллизуется в моноклинной сингонии (Пр. гр. $P2_1/n$). Независимая часть включает все атомы кластерного аниона [{Re₄O₂S₂}(CN)₁₂]⁴⁻, четыре полностью занятых позиции Cs⁺ и три позиции сольватных молекул H₂O. Геометрия кластерного ядра в целом типична для Re₄-содержащих соединений, однако, длины связей Re–Re лежат в диапазоне от 2,6340(8) до 2,6900(8) Å со средним значением 2,66(2) Å, что на ~ 0,1 Å короче по сравнению с комплексом [{Re₄S₄}(CN)₁₂]⁴⁻. Одна из позиций внутренних лигандов комплекса полностью занята лигандом O²⁻, в то время как три другие позиции разупорядочены между атомами O и S с заселенностью атомов кислорода (0,35, 0,25 и 0,40). Наблюдаемые расстояния Re–S и Re – O, находящиеся в интервалах 2,324(6)–2,371(5) Å и 1,94(3)–2,08(1) Å соответственно, хорошо согласуются с расстояниями, наблюдаемыми в кластерах [{Re₄Se₄}(CN)₁₂]⁴⁻ [156], [{Re₆Se₄O₂Cl₂}Cl₆]^{2–} [119], [{Re₆S₅OCl₂}Cl₆]⁻ [120] и [{Re₆Se₄O₄}Cl₆]⁴⁻ [125].

Соединение **23** представляет собой равнобедренный треугольник {Re₃} с расстояниями Re–Re 2,6319(12), 2,6320(12) и 2,6671(17) Å. Примечательно, что эти расстояния несколько короче (на ~ 0,05 Å), чем в ранее описанных комплексах [{Re₃(μ_3 -S)(μ -SO₂)(μ -S)₂}Cl₆(PEt₃)₃]⁻ и [{Re₃(μ_3 -S)(μ -SO₂)(μ -S)₂}Cl₆(PMe₂Ph)₃]⁻, что, по всей видимости, связано с различным количеством КСЭ. К длинному ребру координирован лиганд μ -SO₂²⁻, а к каждому из коротких – μ -O²⁻. Среднее расстояние μ_3 -S–Re составляет 2,347(6) Å, что согласуется с длинами связей, наблюдаемыми в {Re₄}-кластерах [156, 157], а расстояние μ -O–Re (1,976 Å) практически совпадает с таковым в комплексе [{Re₆(μ -O)₁₂}(3-Mepy)₆]⁺ [24]. Расстояния Re–S для лиганда μ -SO₂²⁻ составляют 2,349(6) Å. Длины связей S–O 1,44(3) Å и угол O–S–O 114,2(16)° почти такие же, как и в ранее описанных фосфиновых комплексах [86, 87], таким образом, структурные особенности лиганда μ -SO₂²⁻ в **22** не являются исключительными и соответствуют литературным данным.

Соединения 24 и 25 изоструктурны комплексу $[{\text{Re}_4\text{O}_2\text{S}_2}(\text{CN})_{12}]^{4-}$ и кристаллизуются в моноклинной сингонии (Пр. гр. $P2_1/n$). Независимая часть также включает все атомы кластерного аниона $[{\text{Re}_4\text{Q}_3\text{O}}(\text{CN})_{12}]^{4-}$, четыре полностью занятых позиции Cs⁺ и три позиции сольватных молекул H₂O. Длины связей Re–Re в кластерных ядрах {Re4S₃O} и {Re4Se₃O} лежат в интервалах 2,6792(7)–2,7356(6) Å и от 2,6868(5)–2,7701(5) со средними значениями 2,71(3) Å и 2,73(4) Å соответственно, что немного длиннее таковых в ядре {Re₄S₂O₂}. Внутренние лиганды занимают 4 позиции, две из

которых полностью заняты атомами S или Se, а две других – разупорядочены между атомами O и Q (Q = S, Se) с заселенностью атомов кислорода (0,8, и 0,2). Наблюдаемые расстояния Re–S и Re–Se, находятся в диапазонах 2,354(3)–2,432(12) Å и 2,4548(12)– 2,5850(7) Å соответственно и хорошо согласуются с расстояниями, наблюдаемыми в халькоцианидах [{Re₄Q₄}(CN)₁₂]⁴⁻ [156]. Длины связей Re–O для обоих комплексов близки и меняются от 2,056(10) до 2,102(18) со средним значением 2,08(2) Å, что практически не отличается от наблюдаемых расстояний в [{Re₄S₂O₂}(CN)₁₂]⁴⁻ и литературных данных для [{Re₆Se₄O₂Cl₂}Cl₆]²⁻ [119], [{Re₆S₅OCl₂}Cl₆]⁻ [120] и [{Re₆Se₄O₄}Cl₆]⁴⁻ [125]. 3.3. Получение гетерометаллических рений-молибденовых и ренийвольфрамовых кластерных комплексов

3.3.1. Комплексы Re/Мо

Первым этапом работы по получению гетерометаллических комплексов было добавление к реакционной смеси ReI₃/Q/KCN (Q = S, Se, Te) оксида молибдена MoO₃ с различным соотношением Re:Mo. Но прежде чем перейти к результатам работы, стоит отметить, что в случае теллура не происходило образование гетерометаллических комплексов во всех проведенных реакциях, а образовывались гомометаллические кластеры {Re₄} и / или {Mo₄}. Что же касается реакций с серой или селеном, то результаты оказались достаточно интересными.

Так, взаимодействие смеси ReI₃, MoO₃ (молярное соотношение 1:1) и соответствующего халькогена с избытком цианида калия при температуре 500°С образованию гетерометаллических приводит к четырехъядерных анионов $[{Mo_2Re_2Q_4}(CN)_{12}]^{6-}$ (Q = S, Se). Сульфидный комплекс был выделен в виде цезийкалиевой соли Cs₂K₄[{Mo₂Re₂S₄}(CN)₁₂]·2H₂O·2MeOH (**26**), а селенидный – в виде $K_6[\{Mo_2Re_2Se_4\}(CN)_{12}]$ ·10H₂O (27). В аналогичных реакциях с соотношением Re:Mo = 1:3 происходит образование анионных комплексов [$\{Mo_3ReQ_4\}(CN)_{12}\}^{7-}$, выделенных в виде солей Cs7[{Mo3ReS4}(CN)12]·12H2O (28) и K7[{Mo3ReSe4}(CN)12]·8H2O·2MeOH (29). Для повышения выхода реакций температура синтеза была оптимизирована и составила 450°С для сульфидного и 550°С для селенидного комплекса. Отметим, что все гетерометаллические кластеры были выделены в индивидуальном виде и их кристаллическая структура была определена методом РСА.

Для подтверждения фазовой чистоты для всех полученных комплексов были записаны порошковые дифрактограммы, которые хорошо соответствовали рассчитанным из структурных данных (Рис. П23–П26). Кроме того, были записаны масс спектры для водных растворов кластеров (Рис. П34–П37), и было обнаружено, что кластерные анионы могут диссоциировать в процессе ионизации, теряя CN-лиганды, при этом сохраняя кластерное ядро. Наиболее интенсивные сигналы на масс-спектрах относятся к анионам состава Cs₂K[{Mo₂Re₂S₄}(CN)₁₁]⁻, K₃[{Mo₂Re₂Se₄}(CN)₁₁]⁻, Cs₃[{Mo₃ReS₄}(CN)₁₁]⁻. Также масс-спектрометрия показала отсутствие каких-либо

примесей с другим соотношением металлов в кластерном ядре, что подтверждает чистоту синтезированных комплексов.

Полученные соединения являются типичными примерами тетраэдрических цианидных комплексов типа $[{M_4X_4}(CN)_{12}]^{n-}$, содержащих 12 кластерных скелетных электронов и имеющих 6 двухэлектронных связей металл–металл. Можно принять, что формальная степень окисления атомов рения, как и в случае халькогенидных комплексов $[{Re_4Q_4}(CN)_{12}]^4$, равна +4, а степень окисления атомов молибдена равна +3, таким образом, каждый из металлов предоставляет в кластерное ядро по 3 электрона.

3.3.2. Комплексы Re/W

Получив серию гетерометаллических тетраэдрических цианидных комплексов рения и молибдена, было решено перейти к системе Re/W. Следует упомянуть, что, как и в случае молибдена, в реакциях с теллуром происходило образование только гомометаллических комплексов {Re₄} и / или {W₄}.

В реакциях смеси ReI₃/WO₃ (молярное соотношение 1:1) с серой и избытком KCN при температуре 500°C происходило образование черно-коричневого расплава, при растворении которого в воде был получен коричневый раствор. Путем диффузии паров MeOH в водный раствор комплекса с добавлением CsCl были получены игольчатые кристаллы двух типов, отличающиеся визуально. Определив структуру методом PCA, было обнаружено, что состав комплексов – Cs₅K[{Re₂W₂S₄}(CN)₁₂]·2H₂O·MeOH (**30**) и Cs₆K[{ReW₃S₄}(CN)₁₂]·4H₂O (**31**).

Несмотря на то, что соединения кристаллизуются в разных пространственных группах, рост кристаллов происходил одновременно, поэтому нам не удалось разделить полученные кластеры. Согласно данным РФА (Рис. 3.43) основной фазой является комплекс с ядром { $Re_2W_2S_4$ }, в то время как рефлексы от соли $Cs_6K[{ReW_3S_4}(CN)_{12}]$ практически не наблюдаются (возможно, это также связано с различной кристалличностью кластеров).

Рис. 3.43. Порошковая дифрактограмма образующейся смеси комплексов **30** и **31** в сравнении с рассчитанными по структуре монокристаллов

Результаты масс-спектрометрии высокого разрешения (ESI-MS) для водного раствора смеси **30** и **31** показывают, что он содержит смесь кластерных анионов $[\{\text{Re}_2\text{W}_2\text{S}_4\}(\text{CN})_{12}]^{6-}$ и $[\{\text{Re}\text{W}_3\text{S}_4\}(\text{CN})_{12}]^{7-}$, которые могут диссоциировать в процессе ионизации, теряя терминальные лиганды CN^- ; при этом все внутренние лиганды остаются координированными к металлокластеру (Рис. 3.44). Наиболее интенсивные сигналы – $\text{Cs}_3[\{\text{Re}_2\text{W}_2\text{S}_4\}(\text{CN})_{11}]^-$ и $\text{Cs}_3[\{\text{Re}\text{W}_3\text{S}_4\}(\text{CN})_{11}]^-$ (соотношение интенсивностей ~ 2:1), полностью совпадают с соответствующими рассчитанными изотопными распределениями, подтверждающими состав кластерных единиц, кроме того, на масс-спектрах не наблюдалось форм с другим соотношением металлов в кластерном ядре.

Изменение условий синтеза, таких как температура, время реакции и соотношение исходных реагентов, не привело к образованию сульфидных кластеров в индивидуальном виде, и во всех случаях была получена смесь продуктов.

Полученные соединения, как и рений-молибденовые аналоги, имеют 6 двухэлектронных связей металл-металл и содержат 12 кластерных скелетных электронов. Формальные степени окисления атомов рения и вольфрама составляют +4 и +3 соответственно.

Рис. 3.44. Фрагмент масс-спектра водного раствора образующейся смеси комплексов 30 и 31

При дальнейшем исследовании системы Re/W, мы обнаружили, что взаимодействие смеси ReI₃, WO₃ (молярное соотношение 1:1) и селена с избытком цианида калия при температуре 500°C приводит к образованию четырехъядерного комплекса, который был выделен из водного раствора в виде калиевой соли K₆[{Re₂W₂Se₄}(CN)₁₂]·10H₂O (**32**). Интересно, что данное соединение оказалось изоструктурно рений-молибденовому комплексу K₆[{Mo₂Re₂Se₄}(CN)₁₂]. Для подтверждения фазовой чистоты **32** была записана порошковая дифрактограмма, которая хорошо совпадала с рассчитанной на основе структурных данных (Рис. П27). Масс-спектр раствора полученного комплекса в H₂O (Рис. П38) содержит только аддукты кластерного аниона [{Re₂W₂Se₄}(CN)₁₂]⁶⁻ с катионами калия, в то время как кластерных анионов другого состава обнаружено не было. Таким образом, можно заключить, что соединение **32** образуется в индивидуальном виде.

При изменении загрузки исходных иодида рения и оксида вольфрама до соотношения 1:3, в аналогичных условиях при температуре 500°С происходит образование анионного комплекса с кластерным ядром {ReW₃Se₄}, выделенного из водного раствора в виде цезиевой соли Cs₆[{ReW₃Se₄}(CN)₁₂]·5,2H₂O·MeOH (**33**). По данным РФА соединение оказалось однофазным (Рис. П28). Также чистота продукта была подтверждена данными масс-спектрометрии, согласно которым экспериментальные сигналы идеально совпадают с соответствующими рассчитанными изотопными

распределениями. Масс-спектрометрическое исследование водного раствора комплекса **33** подтвердило наличие только аддуктов кластерного аниона $[{ReW_3Se_4}(CN)_{12}]^{6-}$ и отсутствие анионов с другим соотношением металлов (Рис. П39). Наиболее интенсивный сигнал на масс-спектре относится к аниону состава K₄[{ReW₃Se₄}(CN)₁₁]⁻.

Было обнаружено, что, несмотря на различное соотношение металлов в кластерном ядре, рений-вольфрамовые селенидные комплексы **32** и **33** содержат одинаковое количество катионов, что подтверждается как данными PCA, так и элементным анализом. Таким образом, если кластер [$\{\text{Re}_2\text{W}_2\text{Se}_4\}(\text{CN})_{12}$]^{6–} является типичным примером 12электронного соединения, то при переходе к [$\{\text{ReW}_3\text{Se}_4\}(\text{CN})_{12}$]^{6–}, ядро { ReW_3 } становится электронодефицитным (11 КСЭ). Нечетное количество кластерных скелетных электронов определяет парамагнетизм данного кластерного комплекса, что будет более подробно рассмотрено в разделе 3.3.4.

3.3.3. Исследование электрохимических свойств

Хорошо известно, что тетраэдрические халькогенидные кластерные комплексы молибдена и вольфрама обладают двумя обратимыми одноэлектронными окислительными переходами, а именно из состояния с 12 КСЭ в состояния с 11 и 10 КСЭ [178-180]. В то же время халькогенидные комплексы рения не подвергаются окислительно-восстановительным превращениям. Поэтому можно предположить, что, замещая атомы рения на атомы молибдена или вольфрама, мы можем варьировать электрохимические свойства получаемых соединений.

Вольтамперограмма кластера ДЛЯ $[{Mo_2Re_2Se_4}(CN)_{12}]^{6-}$ (27) содержит один 3.45). электрохимический переход (Рис. Площади пиков катодного И анодного ΔE полученного перехода близки, однако, процесса составляет 0,186 В, что говорит о квазиобратимом характере электрохимической реакций. Стоит отметить, что бо́льшие значения ΔE, обратимых характерные для чем (0,059 B), одноэлектронных переходов наблюдаются кластерных для многих

вольтамперограмма комплекса 27

комплексов, что может быть связано с медленным изменением геометрии соединения по сравнению со скоростью электрохимической реакции. Таким образом, данный переход можно отнести к одноэлектронному окислению [{ $Mo_2Re_2Se_4$ }(CN)₁₂]⁶⁻ (12 КСЭ) \leftrightarrow [{ $Mo_2Re_2Se_4$ }(CN)₁₂]⁵⁻ (11 КСЭ). Значение потенциала полуволны $E_{1/2}$ составляет 0,717 В.

Вольтамперограмма ДЛЯ $[{Re_2W_2Se_4}(CN)_{12}]^{6-}$ (32)полностью аналогична вольтамперограмме для рениймолибденового комплекса и содержит один электрохимический 3.46), переход (Рис. который можно отнести к одноэлектронному окислению $[{Re_2W_2Se_4}(CN)_{12}]^{6-}$ (12 КСЭ) \leftrightarrow $[{Re₂W₂Se₄}(CN)₁₂]⁵⁻$ (11 ΚCЭ). ΔΕ προцесса составляет 0,112 В, что также говорит о квазиобратимом характере электрохимической реакции. Значение потенциала полуволны Е_{1/2} составляет 0,491 В.

Для комплексов с соотношением металлов в кластерном ядре M:Re = 3:1 (M = Mo, W) характерно другое поведение. Так, вольтамперограмма кластера для $[{Mo_3ReSe_4}(CN)_{12}]^{7-}$ (29) содержит два электрохимических перехода (Е_{1/2} = 0,005 В и 0,713 В). ДЕ процессов составляют 0,125 В и 0,081 В соответственно (Рис. 3.47), что говорит 0 квазиобратимом характере электрохимических реакций. Первый переход можно отнести к одноэлектронному окислению

вольтамперограмма комплекса 32

Рис. 3.47. Циклическая

вольтамперограмма комплекса 29

 $[\{Mo_3ReSe_4\}(CN)_{12}]^{7-} (12 \text{ KCЭ}) \leftrightarrow [\{Mo_3ReSe_4\}(CN)_{12}]^{6-} (11 \text{ KCЭ}); второй переход - к окислению [\{Mo_3ReSe_4\}(CN)_{12}]^{6-} (11 \text{ KCЭ}) \leftrightarrow [\{Mo_3ReSe_4\}(CN)_{12}]^{5-} (10 \text{ KCЭ}).$

Ha вольтамперограмме комплекса [{ReW₃Se₄}(CN)₁₂]⁶⁻ (**33**) также присутствует квазиобратимых электрохимических лва перехода (Рис. 3.48) с $E_{1/2} = -0,324$ В ($\Delta E = 0,151$ В) и $E_{1/2} = 0,396$ В ($\Delta E = 0,155$ В). Так как кластер $[{ReW_3Se_4}(CN)_{12}]^{6-}$ находится 11-В электронной форме, то наблюдаемые переходы можно отнести К одноэлектронному восстановлению [{ReW₃Se₄}(CN)₁₂]⁶⁻ (11 КСЭ) $[{ReW_3Se_4}(CN)_{12}]^{7-}$ (12) \leftrightarrow КСЭ) И одноэлектронному окислению

 $[{\text{ReW}_{3}\text{Se}_{4}}(\text{CN})_{12}]^{6-}(11 \text{ KC}\Theta) \leftrightarrow [{\text{ReW}_{3}\text{Se}_{4}}(\text{CN})_{12}]^{5-}(10 \text{ KC}\Theta).$

Таким образом, последовательная замена атомов рения на атомы молибдена или вольфрама в кластерном ядре комплексов [{Re₄Se₄}(CN)₁₂]⁴⁻ приводит к увеличению заряда изоэлектронных анионов и появлению одного или двух окислительновосстановительных переходов. В случае комплексов Re/Mo потенциалы полуволны для электрохимических процессов смещены в анодную область по сравнению с комплексами Re/W. Наибольшее смещение потенциала окисления в область отрицательных значений наблюдается для комплекса с металлоостовом {ReW₃}. Это приводит, в частности, к окислению кластера [ReW₃Se₄(CN)₁₂]⁷⁻ (12 КСЭ) кислородом воздуха в водном растворе и стабилизации электронодефицитной формы [ReW₃Se₄(CN)₁₂]⁶⁻ (11 КСЭ).

3.3.4. Исследование магнитных свойств

Единственным из полученных гетерометаллических соединений, которое содержит 11 КСЭ и демонстрирует парамагнитный характер, является $Cs_6[{ReW_3Se_4}(CN)_{12}]$ (33). В интервале температур 40–300 К магнитную восприимчивость $\chi_p(T)$ комплекса **33** можно описать законом Кюри-Вейсса со значениями $\mu_{3\phi\phi} \approx 1.78 \ \mu_B$ и $\theta \approx -5$ К (Рис. 3.49). Полученное значение эффективного момента очень близко к теоретической величине 1,73 $\mu_{\rm B}$ для чисто спиновых моментов ионов с одним неспаренным электроном (S = 1/2).

Уменьшение эффективного момента $\mu_{3\phi\phi}$ при понижении температуры (Рис. 3.49) может быть связано с различными механизмами. Изотропным антиферромагнитным обменным взаимодействием удается описать только наиболее резкое падение $\mu_{9\phi\phi}$ при
температурах ниже 10 К. Плавное снижение $\mu_{9\phi\phi}$ в интервале 100–10 К может быть связано с анизотропным (цепочечным) обменным взаимодействием.

Рис. 3.49. (слева) Температурная зависимость магнитной восприимчивости χ для комплекса **33**, измеренная в магнитном поле H=1 кЭ (о) и 10 кЭ (•). (справа) Температурные зависимости 1/χ_p и μ_{eff}; эффективный магнитный момент рассчитан в приближении невзаимодействующих

моментов ($\theta = 0$)

3.3.5. Описание кристаллических структур

Кластерное ядро { $\text{Re}_{x}M_{4-x}Q_{4}$ } (M = Mo, W; Q = S, Se) во всех полученных гетерометаллических комплексах имеет типичное строение, характерное для тетраэдрических халькогенидных кластеров типа { $M_{4}Q_{4}$ }. Атомы рения и молибдена или вольфрама во всех структурах разупорядочены по общим позициям и составляют тетраэдрический металлоостов { $\text{Re}_{x}M_{4-x}$ }. Атомы халькогена координируются по μ_{3} типу к каждой грани тетраэдра. Каждый из атомов металла дополнительно координирован тремя терминальными цианидными лигандами.

Соединение $Cs_2K_4[\{Mo_2Re_2S_4\}(CN)_{12}]$ (26) кристаллизуется в моноклинной сингонии (Пр. гр. $P2_1/n$). Независимая часть структуры содержит все атомы кластерного аниона $[\{Mo_2Re_2S_4\}(CN)_{12}]^{6-}$, шесть позиций катионов K⁺ и Cs⁺, две позиции сольватных молекул воды и две молекулы метанола. Уточнение заселенности позиций металлов в кластерном ядре привело к итоговому соотношению атомов рения и молибдена – 2,0:2,0. Все позиции катионов и сольватных молекул воды имеют полную заселенность.

109

Соединение K₆[{Mo₂Re₂Se₄}(CN)₁₂]·10H₂O (**27**) кристаллизуется в тригональной сингонии (Пр. гр. *P3*). Независимая часть структуры содержит два кластерных аниона [{Mo₂Re₂Se₄}(CN)₁₂]^{6–}, шесть фрагментов {M₂S₂(CN)₄}, 18 позиций катионов K⁺ и 30 позиций сольватных молекул воды. Уточнение заселенности позиций металлов в структуре привело к итоговому соотношению атомов рения и молибдена – 2,0:2,0.

Соединение Cs₇[{Mo₃ReS₄}(CN)₁₂]·12H₂O (**28**) кристаллизуется в ромбической сингонии (Пр. гр. *Pbcn*). Независимая часть кластерного аниона содержит две позиции атомов металла, два атома серы и шесть CN-групп. Также независимая часть включает шесть разупорядоченных позиций Cs/O между катионами Cs⁺ и сольватными молекулами H₂O и пять позиций, полностью занятых сольватными молекулами воды. Заселенности металлов в кластерном ядре были уточнены как 0,78/0,22 (Mo1/Re1) и 0,72/0,28 (Mo2/Re2).

Соединение $K_7[\{Mo_3ReSe_4\}(CN)_{12}]\cdot 8H_2O\cdot 2MeOH$ (**29**) кристаллизуется в ромбической сингонии (Пр. гр. *Pnma*). Независимая часть структуры содержит фрагмент кластерного аниона $\{M_3S_3(CN)_7\}$, пять позиций K^+ , часть из которых полностью заселена, а часть заселена наполовину, четыре позиции сольватных молекул воды и одну позицию молекулы метанола. Заселенности позиций металлов в кластерном ядре были уточнены как 0,83/0,17 (Mo1/Re1), 0,75/0,25 (Mo2/Re2) и 0,71/0,29 (Mo3/Re3).

Соединение Cs₅K[{Re₂W₂S₄}(CN)₁₂]·2H₂O·MeOH (**30**) кристаллизуется в моноклинной сингонии (Пр. гр. $P2_1/c$). Независимая часть структуры содержит все атомы кластерного аниона [{Re₂W₂S₄}(CN)₁₂]^{6–}, пять позиций катионов Cs⁺, одну позицию K⁺, две позиции сольватных молекул воды и одну молекулу метанола. Все позиции катионов, сольватных молекул воды и метанола имеют полную заселенность.

Соединение $C_{5,2}K_{1,8}[{ReW_3S_4}(CN)_{12}] \cdot 5H_2O$ (**31**) кристаллизуется в моноклинной сингонии (Пр. гр. $P2_1/n$). Независимая часть структуры содержит все атомы кластерного аниона $[{ReW_3S_4}(CN)_{12}]^{7-}$, 12 позиций катионов, 8 позиций сольватных молекул воды. Две позиции цезия полностью заселены, в то время как остальные катионы разупорядочены. Итоговое соотношение Cs:K = 5,2:1,8.

Соединение K₆[{Re₂W₂Se₄}(CN)₁₂]·10H₂O (**32**) изоструктурно соединению **27** (Пр. гр. *Р3*).

Соединение Cs₆[{ReW₃Se₄}(CN)₁₂]·5,2H₂O·MeOH (**33**) кристаллизуется в моноклинной сингонии (Пр. гр. $P2_1/n$). Независимая часть структуры содержит все атомы

кластерного аниона [{ReW₃Se₄}(CN)₁₂]⁶⁻, десять позиций катионов Cs⁺, шесть позиций сольватных молекул воды и одну молекулу метанола. Два катиона Cs⁺ разупорядочены по двум близко лежащим позициям.

Рассмотрим, как влияет замещение металлов в кластерном ядре на его геометрию на примере рений-молибденовых комплексов. Основные длины связей в полученных анионах приведены в таблице 3.4. Для сравнения также указаны расстояния для известных в настоящее время 12-электронных кластерных комплексов – K4[{Re4Q4}(CN)12] (Q = S, Se) [156] и K7Na[Mo4Se4(CN}12] [181].

Следует отметить, что расстояния в молибденовом комплексе немного длиннее, чем в рениевом (М–М на ~ 0,1 Å, М–Se на ~ 0,05 Å). Таким образом, можно предположить, что при уменьшении содержания рения, кластерное ядро будет «расширяться». Действительно, при переходе от {Re₂Mo₂} к {ReMo₃} длины связей М–М изменяются от 2,805(8) Å до 2,834(5) Å для сульфидного комплекса и от 2,851(8) Å до 2,886(10) Å для селенидного, меньшее из которых на ~ 0,05 Å длиннее, чем в {Re₄}. Также наблюдается небольшое удлинение связей М–Se, в то время как расстояния М–S лежат в более узком интервале и практически не зависят от состава металлоостова.

Таблица 3.4.

Средние значения длин связей металл – металл и металл – халькоген в комплексах 26–29, K4[{Re4Q4}(CN)12] (Q = S, Se) и K7Na[M04Se4(CN}12]

Соединение	M–M, Å	M–Q, Å		
$Cs_2K_4[{Mo_2Re_2S_4}(CN)_{12}]$	2,7975(4)-2,8170(4)	2,3498(13)-2,3722(13)		
	2,805(8)	2,363(6)		
$Cs_7[{Mo_3ReS_4}(CN)_{12}]$	2,8307(4)-2,8426(5)	2,3687(10)-2,3791(10)		
	2,834(5)	2,373(4)		
$K_{6}[\{Mo_{2}Re_{2}Se_{4}\}(CN)_{12}]$	2,8341(2)-2,8642(2)	2,4742(3)-2,4964(3)		
	2,851(8)	2,485(5)		
$K_7[{Mo_3ReSe_4}(CN)_{12}]$	2,8716(7)-2,8944(5)	2,4862(6)-2,5056(9)		
	2,886(10)	2,494(5)		
$K_4[{Re_4S_4}(CN)_{12}][156]$	2,7487(3)-2,7580(4)	2,3648(11)-2,3772(11)		
	2,752(5)	2,371(6)		
$K_{4}[{Re_{4}Se_{4}}(CN)_{12}][156]$	2,7876(3)-2,8048(3)	2,4521(5)-2,4877(6)		
	2,796(6)	2,462(8)		
K7Na[Mo4Se4(CN}12] [181]	2,9004(4)-2,9255(4)	2,4928(5)-2,5218(5)		
	2,910(8)	2,507(9)		

Прежде чем перейти к рений-вольфрамовым кластерам, отметим, что для вольфрама не описаны двенадцатиэлектронные тетраэдрические комплексы, а подавляющее большинство известных соединений являются электронодефицитными и содержат 10 КСЭ, поэтому для сравнения в таблице приведены только расстояния для рениевых комплексов.

Наблюдаемые расстояния М–Q для комплексов Re/W (Таблица 3.5) лежат в довольно узком интервале: наблюдается небольшое удлинение связей М–Se в ряду {Re₄}– {Re₂W₂}–{ReW₃}, в то время как расстояния М – S практически не зависят от состава металлоостова. Как и в случае комплексов Re/Mo, геометрический размер гетерометаллического тетраэдра {(Re/W)₄} увеличивается по сравнению с {Re₄}. Однако, средние расстояния М–M для сульфидных комплексов практически не изменяются при переходе от {Re₂W₂} к {ReW₃}. Для селенидных кластеров наблюдается удлинение связи М–M на ~ 0,2 Å, но все же это увеличение не столь ярко выражено, как для комплексов с молибденом.

Таблица 3.5.

Соединение	M–M, Å	M–Q, Å		
$C_{\alpha} \cdot K[(\mathbf{D}_{\alpha}, \mathbf{W}, \mathbf{S}_{\alpha})(\mathbf{C}, \mathbf{N})]$	2,7908(4)–2,8179(4)	2,3586(18)-2,3817(18)		
$C_{55K}[\{Ke_2 \le 254\}(C_{1N})_{12}]$	2,805(9)	2,372(8)		
$C_{s_{5,2}K_{1,8}}[{ReW_3S_4}(CN)_{12}]$	2,7980(5)-2,8127(5)	2,365(2)–2,379(2)		
	2,802(5)	2,372(5)		
$K_{6}[{Re_{2}W_{2}Se_{4}}(CN)_{12}]$	2,8331(9)-2,8590(9)	2,4809(18)-2,4937(18)		
	2,849(7)	2,488(4)		
$Cs_6[{ReW_3Se_4}(CN)_{12}]$	2,8515(3)-2,8911(3)	2,4864(7)-2,5025(7)		
	2,869(13)	2,494(6)		
$K_{4}[{Re_{4}S_{4}}(CN)_{12}][156]$	2,7487(3)-2,7580(4)	2,3648(11)-2,3772(11)		
	2,752(5)	2,371(6)		
$K_4[{Re_4Se_4}(CN)_{12}][156]$	2,7876(3)-2,8048(3)	2,4521(5)–2,4877(6)		
	2,796(6)	2,462(8)		

Средние значения длин связей металл – металл и металл – халькоген в комплексах 30–33, K4[{Re4Q4}(CN)12] (Q = S, Se)

3.4. Получение кластерных комплексов рения с ранее неизвестными типами кластерных ядер

3.4.1. Семиядерные комплексы

Как было отмечено ранее, при изучении системы ReI₃/MO₃/Q/KCN (Q = S, Se; M = Mo, W) нам удалось получить серию гетерометаллических кластерных комплексов с ядрами {Re₂M₂Q₄} и {ReM₃Q₄}. Так как состав металлоостова в данных соединениях в большей степени определяется соотношением ReI₃ и MO₃ в реакционной смеси, то возникает вопрос – почему не были описаны соединения с ядром {Re₃MQ₄}? Безусловно, реакции 3ReI₃ + MO₃ + 4Q + KCN_{изб} были проведены, однако, образующиеся продукты оказались крайне необычными и интересными. Так, в реакции с селеном при температуре 400°C происходило образование семиядерных комплексов K₈[{Re₃Se₄(CN)₉} {Re₃MSe₄}(CN)₉] (**34**, M = Mo; **35**, M = W). Следует отметить, что данный тип кластерных комплексов ранее не был описан не только для рения, но и для других переходных металлов.

Рассмотрим строение полученных 3.50). соединений (Рис. Кластерный анион $[{Re_3Se_4(CN)_9}{Re_3MSe_4}(CN)_9]^{8-}$ можно формально разделить на два фрагмента, первый – треугольный кластер [{Re₃Se₄}(CN)₉], второй – тетраэдрический комплекс с ядром {Re₃MSe₄}, где к трем атомам рения координированы три терминальных лиганда CN⁻, а к атому молибдена или вольфрама – три атома селена от треугольного кластера.

Дальнейшее изменение условий реакций показало, что при соотношении металлов Re:M = 6:1 (M = Mo, W) выход продуктов значительно повышается.

Рис. 3.50. Строение комплексов [{Re₃Se₄(CN)₉} {Re₃MSe₄}(CN)₉]⁸⁻ M = Mo, W

Следующим этапом нашей работы был переход к реакционной смеси ReI₃/MO₃/S/KCN (M = Mo, W; соотношение Re:M = 6:1). Ожидаемыми продуктами реакций были аналогичные сульфидные семиядерные комплексы

 $[\{Re_3S_4(CN)_9\}\{Re_3MS_4\}(CN)_9]^{8-}$, однако, согласно данным РСА, как в случае молибдена, так и в случае вольфрама, при температуре 400°С происходило образование семиядерных комплексов рения, выделенных в виде цезиевой соли $Cs_7[\{Re_3S_4(CN)_9\}\{Re_4S_4\}(CN)_9]\cdot 4H_2O$ (**36**), без включения молибдена и вольфрама в кластерное ядро. Строение данного комплекса аналогично вышеописанным соединениям **34** и **35**.

При изучении системы ReI₃/Se/P/KCN было обнаружено, что при температуре 400°C происходит образование семиядерного селенидного комплекса рения $K_7[{Re_3Se_4(CN)_9}{Re_4Se_4}(CN)_9] \cdot 11H_2O$ (**37**). Здесь интересно отметить, что данный кластер был синтезирован независимо от соединения **36** при попытке получения смешаннолигандных кластерных комплексов рения с фосфором и селеном.

Согласно данным рентгенофазового анализа (Рис. П29–П32) все полученные семиядерные соединения не содержат кристаллических примесей. Кроме того, их состав и чистота были подтверждены данными масс-спектрометрии, согласно которым, экспериментальные сигналы всех анионов идеально совпадают с соответствующими рассчитанными изотопными распределениями (Рис. П40–П43). Согласно масс-спектрам кластерные анионы [{Re₃Q₄(CN)₉} {Re₄Q₄}(CN)₉]^{7–} (Q = S, Se) в **36** и **37** могут диссоциировать в процессе ионизации, теряя CN-лиганды, без разрушения кластерного ядра. В то же время кластерные анионы в **34** и **35** не диссоциируют при ионизации, а на масс-спектрах наблюдаются только сигналы K_{6-x}H_x[{Re₃Se₄(CN)₉} {Re₃MSe₄}(CN)₉]^{2–} (x = 0-6).

Таким образом, интересной особенностью полученных семиядерных комплексов является то, что, будучи кластерными олигомерами, связь в которых осуществляется через мостиковые внутренние лиганды, они очень устойчивы в растворах и в твердом теле. Это свидетельствует о наличии сильных связывающих взаимодействий в центральном тетраэдрическом фрагменте MQ₃.

Исходя из формул полученных соединений, можно принять, что конфигурация «внешних» атомов рения d³, как и в случае четырехъядерных комплексов, а конфигурация «центрального» атома Мо, W или Re – d⁴. Таким образом, все полученные кластеры являются изоэлектронными и содержат по 22 кластерных скелетных электрона.

114

3.4.1.1. Исследование магнитных свойств

Было обнаружено, что полученные семиядерные кластеры обладают магнитным моментом, несмотря на четное количество кластерных скелетных электронов, что очень необычно для кластерной химии.

Магнитная восприимчивость $\chi_p(T)$ семиядерных комплексов имеет сложную температурную зависимость, не описывающуюся законом Кюри-Вейсса (Рис. 3.51, П44– П46). Рассчитанное формально значение эффективного момента изменяется от $\mu_{3\phi\phi} \sim 2,5$ μ_B при 300 К до $\mu_{3\phi\phi} \sim 0,4$ μ_B при 1,77 К. Это уменьшение $\mu_{3\phi\phi}$, однако, невозможно объяснить антиферромагнитным взаимодействием магнитных моментов, величина которых не зависит от температуры. В данном случае изменяется именно величина магнитных моментов. Наблюдаемое поведение $\mu_{3\phi\phi}(T)$ говорит о том, что при комнатной температуре для данных соединений реализуется состояние с двумя неспаренными электронами на формульную единицу, а с понижением температуры до 1,77 К происходит переход комплексов в диамагнитное состояние.

Рис. 3.51. (слева) Температурная зависимость магнитной восприимчивости χ для комплекса **37**, измеренная в магнитном поле H=1 кЭ (о) и 10 кЭ (•). (справа) Эффективный магнитный момент, рассчитанный в приближении невзаимодействующих моментов (*θ* = 0)

Низкотемпературная намагниченность для всех комплексов составляет менее 0,02 $\mu_{\rm B}$ на формульную единицу при H = 1 кЭ, что согласуется со слабомагнитным основным состоянием.

3.4.1.2. Описание кристаллических структур

Соединение $K_8[{Re_3Se_4(CN)_9}{Re_3MoSe_4}(CN)_9] \cdot 6H_2O$ (34) кристаллизуется в триклинной сингонии (Пр. гр. *P-1*). Независимая часть структуры включает в себя половину кластерного аниона, при ЭТОМ заселенность атома молибдена, разупорядоченного по двум позициям (Рис. 3.52а), составляет 0,5, что в итоге дает 1 атом Мо на формульную единицу. Центр аниона находится в центре инверсии, относительно которого возможны два равновероятных положения кластерного аниона в структуре. Также независимый фрагмент содержит 5 позиций катионов К⁺, четыре из которых полностью заняты, а две заняты на половину и три позиции сольватных молекул H₂O с полной заселенностью.

Соединение K₈[{Re₃Se₄(CN)₉} {Re₃WSe₄}(CN)₉]·7H₂O·MeOH **(35)** кристаллизуется в триклинной сингонии (Пр. гр. *P-1*). Независимая часть аналогична таковой в соединении **34** за исключением сольватного состава и содержит 5 молекул кристаллизационной воды (две с полной заселенностью и три с половинной) и одну молекулу метанола с половинной заселенностью.

Соединение $Cs_7[{Re_3S_4(CN)_9}{Re_4S_4}(CN)_9] \cdot 4H_2O$ (**36**) кристаллизуется в триклинной сингонии (Пр. гр. *P-1*). Независимая часть структуры включает два атома рения с двумя координированными CN-группами, один центральный атом Re, четыре атома серы, четыре катиона Cs^+ и две молекулы воды. Кластерный анион имеет симметрию 3m, при этом ось 3 порядка проходит вдоль аниона через μ_3 -атомы серы и центральный атом рения. Независимая часть аниона показана на рисунке 3.526.

Соединение $K_7[{Re_3Se_4(CN)_9}{Re_4Se_4}(CN)_9] \cdot 11H_2O$ (**37**) кристаллизуется в триклинной сингонии (Пр. гр. *P-1*). Независимая часть, как и в гетерометаллических комплексах, содержит половину кластерного аниона с заселенностью центрального атома рения 0,5, 4 позиции катионов K⁺ (три с полной заселенностью и одну с половинной) и 8 позиций кристаллизационных молекул воды с заселенностями 0,5, 0,75 и 1.

Рис. 3.52. Независимая часть структур 34 (а) и 36 (б)

Средние длины связей между атомами в кластерном ядре в семиядерных комплексах приведены в таблице. Для удобства обозначим центральный атом символом M, а «терминальные» халькогенидные лиганды от треугольного кластера символом Q', и будем использовать эти обозначения в дальнейшем. Отметим, что геометрия кластерного ядра селенидных комплексов практически не зависит от типа центрального атома, поэтому их строение рассмотрим на примере рениевых кластеров.

Таблица 3.6.

Комплекс	Re–Re, Å	Re–M, Å	Re–Q, Å	M–Q, Å	M–Q', Å
$[{Re_6MoSe_8}(CN)_{18}]^{8-}$	2,797(3)	2,829(10)	2,471(5)	2,23(3)	2,90(2)
$[{Re_6WSe_8}(CN)_{18}]^{8-}$	2,798(1)	2,841(5)	2,470(2)	2,22(2)	2,85(2)
$[{Re_7Se_8}(CN)_{18}]^{7-}$	2,804(2)	2,841(4)	2,462(3)	2,16(1)	2,85(1)
$[{Re_7S_8}(CN)_{18}]^{7-}$	2,747(1)	2,755(4)	2,358(10)	2,32(1)	2,45(1)

Средние значения длин связей в кластерных ядрах комплексов 34 – 37

Расстояния Re–Re и Re – M в сульфидном комплексе **36** практически не отличаются и хорошо согласуются с таковыми в тетраэдрических халькоцианидных комплексах с ядром {Re₄S₄} [157]. В то же время в селенидных комплексах **34**, **35** и **37** наблюдается небольшое искажение тетраэдра {Re₃M} за счет удлинения связей Re–M на ~ 0,04 Å по сравнению с расстояниями Re–Re.

В полученных соединениях можно выделить три типа связей металл–халькоген. Самые короткие из них – расстояния М–Q в тетраэдре {Re₃MQ₄}. Немного длиннее связи Re–Q, которые имеют типичные значениями для халькоцианидов [{Re₄Q₄}(CN)₁₂]^{4–} [157]. Самые длинные расстояния наблюдаются между центральным атомом М и халькогенидными лигандами Q'. Отметим, что в селенидных комплексах при переходе от M–Q к Re–Q и от Re–Q к M–Q' происходит увеличение длин связей примерно на 0,3 Å, в то время как для сульфидных кластеров это изменение гораздо менее заметно.

3.4.2. Восьмиядерный комплекс

Получив семиядерные комплексы рения с молибденом и вольфрамом в центре кластерного ядра, нам стало интересно, возможно ли образование подобных гетерометаллических семиядерных комплексов с другими элементами, например, с металлами платиновой группы (МПГ). Исследовав взаимодействие иодида рения с хлоридом МПГ (Ru, Rh, Pd, Os, Ir, Pt), халькогеном (S или Se) и избытком КСN, было обнаружено, что почти во всех реакциях происходит образование семиядерных комплексов рения без включения МПГ в кластерное ядро. Однако наиболее интересные результаты, как для серы, так и для селена, были получены в реакциях с хлоридом рутения. Прежде чем перейти к их рассмотрению, отметим, что результат реакции с серой будет описан отдельно в следующем разделе.

Итак, взаимодействие ReI₃, селена и цианида калия с добавлением небольшого количества RuCl₃ при температуре 400°C приводит к образованию восьмиядерного комплекса рения K₈[{Re₈Se₈(μ -O)₃}(CN)₁₈]·19H₂O (**38**). Его строение можно описать следующим образом: два тетраэдра {Re₄Se₄} связаны между собой по вершине тремя мостиковыми кислородными лигандами, а к каждому из оставшихся атомов рения координированы три терминальных лиганда CN⁻ (Рис. 3.53а). Степень окисления всех атомов рения равна +4, а общее количество КСЭ составляет 24, таким образом связи металл – металл в кластерном ядре двухэлектронные. Следует отметить, что примеры кластерных комплексов такого типа не описаны в литературе не только для рения, но и для других металлов. Есть лишь один комплекс [NEt₄]₃[Fe₆W₂S₈(SPh)₆(OMe)₃] с подобным связыванием двух тетраэдров {Fe₃WS₄} через атомы вольфрама тремя мостиковыми метилатными лигандами (Рис. 3.536) [182].

118

Рис. 3.53. Строение комплексов [${Re_8Se_8(\mu-O)_3}(CN)_{18}$]⁸⁻ (а) и [Fe₆W₂S₈(SPh)₆(OMe)₃]³⁻ (б)

По данным РФА соединение 38 является однофазными, что говорит об отсутствии кристаллических примесей (Рис. ПЗЗ). Кроме того, для подтверждения состава, комплекс был проанализирован с помощью масс-спектрометрии высокого разрешения (Рис. 3.54). Масс-спектр отрицательных ионов водного раствора кластера содержит большое число наиболее сигналов, интенсивные которых относятся ИЗ к анионам $K_3[{Re_8Se_8(\mu-O)_2}(CN)_{18}]^{3-}$ и $K_2H[{Re_8Se_8(\mu-O)_2}(CN)_{18}]^{3-}$. Следует отметить, что на массспектре также наблюдаются фрагменты [{ $Re_8Se_8(\mu-O)$ }(CN)_{18}]⁴⁻, таким образом, в процессе ионизации происходит отщепление одного или двух µ-O²⁻ лигандов, при этом кластерное ядро не разрушается. Данный факт может свидетельствовать о связывании тетраэдров не только через атомы кислорода, но и за счёт короткого контакта Re-Re, длина которого составляет 2,942 Å, что немного больше расстояния Re-Re в тетраэдре (2,840 Å).

Рис. 3.54. Фрагмент масс-спектра водного раствора комплекса 38

I, MKA

На циклической вольтамперограмме комплекса **38** (Рис. 3.55) присутствует два квазиобратимых электрохимических перехода с $E_{1/2} = 0,495$ В ($\Delta E = 0,107$ В) и $E_{1/2} = 0,792$ В ($\Delta E = 0,108$ В), которые могут соответствовать окислению кластерного ядра.

Рис. 3.55. ЦВА комплекса 38

3.4.2.1. Описание кристаллической структуры

Соединение **38** кристаллизуется в триклинной сингонии (Пр. гр. *P-1*). Независимая часть структуры содержит все атомы аниона [{ $\text{Re}_8\text{Se}_8(\mu-O)_3$ }(CN)_{18}]^{8-}, 8 позиций катионов K⁺ и 19 позиций сольватных молекул H₂O. Полученный комплекс можно формально разделить на два тетраэдра {Re4}, соединенных тремя мостиковыми кислородными лигандами. Среднее расстояние Re–O согласуется с литературными данными, для комплексов [{ $\text{Re}_6(\mu-O)_{12}$ }(3-Mepy)₆]⁺ [24] и [{ $\text{Re}_{12}\text{CS}_{14}(\mu-O)_3$ }(CN)₆]⁶⁻ [131] и составляет 2,05(2) Å. Интересно отметить, что между вершинами тетраэдров наблюдаются короткие контакты 2,9421(4) Å, что по всей видимости усиливает связывание между фрагментами { Re_4Se_4 }(CN)₉. Геометрия этих фрагментов в целом аналогична геометрии ранее

описанных тетраэдрических комплексов рения [156]. В частности, длины связей Re–Re лежат в диапазоне от 2,7903(5) до 2,8430(4) Å, а измеренный интервал длин связей Re–Se составляет 2,4401(9)–2,4653(8) Å со средним значением 2,456(7) Å, что хорошо коррелирует с расстояниями, указанными для кластера [{Re₄Se₄}(CN)₁₂]^{4–} [104].

3.4.3. Двенадцатиядерный комплекс

Заменив селен на серу в реакции с ReI₃, RuCl₃ и KCN, мы получили комплекс другого строения. В данной реакции при температуре 400°C образуется двенадцатиядерный кластер с общей формулой K₉[{Re₁₂S₁₄}(CN)₂₇]·14H₂O·KI (**39**). Следует отметить, что для рения уже известны двенадцатиядерные комплексы [53, 129, 131, 133], содержащие фрагмент из двух октаэдров {Re₆} (Рис. 3.57а), однако, строение соединения **39** совершенно иное. Его можно описать следующим образом: три тетраэдрических фрагмента {Re₄S₄}(CN)₉ связаны между собой двумя µ₃-мостиковыми сульфидными лигандами (Рис. 3.56б). Дополнительно между двумя тетраэдрами наблюдается связь Re–Re длиной 2,798 Å, что является типичным расстоянием металл–металл для кластерных комплексов рения.

Рис. 3.56. Строение комплексов $[{Re_{12}CS_{17}}(CN)_6]^{8-}$ (слева) и $[{Re_{12}S_{14}}(CN)_{27}]^{9-}$ (справа)

Масс-спектр водного раствора комплекса **39** (Рис. 3.57) содержит большое число сигналов, соответствующих частицам с зарядами 3– и 4–. Сигналы идеально совпадают с соответствующими рассчитанными изотопными распределениями, что подтверждает состав полученного соединения. Кроме того, кластерный анион может диссоциировать в процессе ионизации, теряя СN-лиганды без разрушения кластерного ядра, что свидетельствует о его достаточно высокой стабильности.

Рис. 3.57. Фрагменты масс-спектра комплекса 39

Исходя из формулы кластера **39**, можно рассчитать количество кластерных скелетных электронов, которое составляет 38. Поскольку комплекс содержит 19 связей металл–металл (по 6 в каждом ядре {Re₄} и одну между тетраэдрами), то он не является электронодефицитным, таким образом, все связи Re–Re двухэлектронные.

3.4.3.1. Описание кристаллической структуры

Соединение **39** кристаллизуется в моноклинной сингонии (Пр. гр. C2/c). Независимая часть структуры содержит все атомы аниона [{Re₁₂S₁₄}(CN)₂₇]^{9–}, 13 позиций катионов K⁺ и 18 позиций сольватных молекул H₂O и одну позицию иона I[–]. Полученный комплекс можно формально разделить на три тетраэдра {Re₄}, соединенных тремя μ_3 -мостиковыми сульфидными лигандами. Геометрия тетраэдров {Re₄S₄} в целом аналогична геометрии халькоцианидных комплексов [Re₄S₄(CN)₁₂]^{4–} [157]. В частности, длины связей Re–Re и Re–S лежат в диапазонах 2,7288(7)–2,7853(7) и 2,297(3)–2,379(4) Å со средними значениями 2,76(1) и 2,34(2) Å соответственно и хорошо согласуются с таковыми в [Re₄S₄(CN)₁₂]^{4–}. Расстояние Re–Re между двумя тетраэдрами составляет 2,7977(6) Å, что практически не отличается от связей в тетраэдрах. Связи Re–S с μ_3 -лигандами, соединяющими фрагменты {Re₄S₄}(CN)₉, находятся в интервале от 2,426(3) до 2,446(3) Å со средним значением 2,437(8) и демонстрируют незначительное удлинение на ~ 0,1 Å по сравнению с внутренними лигандами в ядре {Re₄S₄}.

ЗАКЛЮЧЕНИЕ

В рамках настоящей диссертационной работы было продемонстрировано, что иодид рения (III) является перспективным исходным соединением для получения кластерных комплексов различного состава и строения. Была получена большая серия кластерных комплексов, включающая в себя тетраэдрические кластеры рения с такими внутренними лигандами, как CCN^{3–}, PO^{3–}, PO^{2^{3–}}, As^{3–}, AsO^{3–}, Sb^{3–} и Bi^{3–}, гетерометаллические рений-молибденовые и рений-вольфрамовые четырехъядерные комплексы, а также семиядерные, восьмиядерный и двенадцатиядерный кластеры рения. Все полученные соединения стабильны на воздухе и растворимы в воде. Следует отметить, что лиганды $PO_2^{3–}$, AsO^{3–}, Bi^{3–} описаны впервые.

Было обнаружено, что свойства пниктоген-содержащих кластерных соединений в значительной степени отличаются от свойств ранее полученных халькогенидных кластеров. Так, на примере тетраэдрических комплексов с элементами 15 группы продемонстрирована возможность модификации внутреннего лигандного окружения, а именно, окисления, протонирования и замещения. Кроме того, показана зависимость физико-химических свойств гетерометаллических тетраэдрических кластерных комплексов, в первую очередь магнитных и электрохимических, OT состава металлоостова.

Таким образом, в результате работы получена важная фундаментальная информация о возможности использования ReI₃ как для получения новых типов кластерных соединений рения, так и для синтеза гетерометаллических кластеров рения с молибденом или вольфрамом. Результаты данной работы вносят существенный вклад не только в развитие химии кластерных комплексов рения, но и могут быть направлены на дальнейшее исследование возможности использования иодидов применительно к другим кластерообразующим металлам.

123

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

1. Разработаны методы синтеза 36 новых кластерных комплексов исходя из Re₃I₉. Впервые получены тетраэдрические кластеры рения с элементами 15 группы в качестве внутренних лигандов, гетерометаллические рений-молибденовые и рений-вольфрамовые четырехъядерные комплексы, а также семиядерные, восьмиядерный и двенадцатиядерный кластеры рения. Все полученные соединения стабильны на воздухе и растворимы в воде.

2. Показано, что при нагревании Re₃I₉ с KCN при температуре 480°C образуется новый тетраэдрический комплекс K₈[{Re₄(μ_3 -CCN)₄}(CN)₁₂], а в присутствии источников пниктогенов при температуре 450–550°C происходит образование ранее неизвестных кластерных комплексов с внутренними лигандами PO^{3–}, PO₂^{3–}, AsO^{3–}, Sb^{3–} и Bi^{3–}, стабилизация которых обусловлена координацией к атомам рения. Комплексы с лигандами PO₂^{3–}, AsO^{3–} и Bi^{3–} описаны впервые.

3. На примере тетраэдрических комплексов с элементами 15 группы продемонстрирована возможность модификации внутреннего лигандного окружения. Так, при взаимодействии водных растворов комплексов $K_8[{Re_4As_2(AsO)_2}(CN)_{12}]$ и $K_7[{Re_4As_3Q}(CN)_{12}]$ (Q = S, Se) с пероксидом водорода происходит окисление арсенидных лигандов до AsO³⁻. В то же время, аналогичные реакции для $K_6[{Re_4As_2S_2}(CN)_{12}]$ и $K_5[{Re_4Q_3X}(CN)_{12}]$ (Q = S, Se; X = Sb, Bi) приводят к замещению пниктогенидных лигандов на O²⁻.

4. Найдены экспериментальные условия получения солей гетерометаллических кластерных анионов $[{Re_2W_2Se_4}(CN)_{12}]^{6-}$, $[{ReW_3Se_4}(CN)_{12}]^{6-}$, $[{Mo_3ReQ_4}(CN)_{12}]^{7-}$, $[{Mo_2Re_2Q_4}(CN)_{12}]^{6-}$ (Q = S, Se) в виде индивидуальных соединений. Обнаружено, что основными факторами, влияющими на состав кластерного ядра, являются температура синтеза и соотношение исходных реагентов.

5. Показана зависимость окислительно-восстановительных свойств полученных гетерометаллических комплексов от состава металлоостова. Так, при замещении двух атомов рения в ядре {Re₄} на атомы молибдена или вольфрама на ЦВА появляется один квазиобратимый переход, соответствующий окислению из состояния с 12 КСЭ в состояние с 11 КСЭ. При замещении трех атомов рения, наблюдается 2 квазиобратимых перехода: (12 КСЭ) ↔ (11 КСЭ) и (11 КСЭ) ↔ (10 КСЭ).

124

6. Измерение магнитной восприимчивости семиядерных кластерных комплексов $K_8[{Re_3Se_4(CN)_9} {Re_3MSe_4}(CN)_9]$ (M = Mo, W) и $K_7[{Re_3Q_4(CN)_9} {Re_4Q_4}(CN)_9]$ (Q = S, Se) показало, что при комнатной температуре для данных соединений реализуется состояние с двумя неспаренными электронами на формульную единицу, а с понижением температуры до 1,77 К происходит переход комплексов в диамагнитное состояние.

СПИСОК ЛИТЕРАТУРЫ

1. Krasilnikova A.A., Shestopalov M.A., Brylev K.A., Kirilova I.A., Khripko O.P., Zubareva K.E., Khripko Y.I., Podorognaya V.T., Shestopalova L.V., Fedorov V.E., Mironov Y.V. Prospects of molybdenum and rhenium octahedral cluster complexes as X-ray contrast agents // J. Inorg. Biochem. – 2015. – V. 144. – P. 13-17.

2. Krasilnikova A.A., Solovieva A.O., Trifonova K.E., Brylev K.A., Ivanov A.A., Kim S.J., Shestopalov M.A., Fufaeva M.S., Shestopalov A.M., Mironov Y.V., Poveshchenko A.F., Shestopalova L.V. Cellular internalization and morphological analysis after intravenous injection of a highly hydrophilic octahedral rhenium cluster complex - a new promising X-ray contrast agent // Contrast Media Mol. Imaging – 2016. – V. 11, No. 6. – P. 459-466.

3. Krasilnikova A.A., Solovieva A.O., Ivanov A.A., Trifonova K.E., Pozmogova T.N., Tsygankova A.R., Smolentsev A.I., Kretov E.I., Sergeevichev D.S., Shestopalov M.A., Mironov Y.V., Shestopalov A.M., Poveshchenko A.F., Shestopalova L.V. Comprehensive study of hexarhenium cluster complex $Na_{4}[{Re_{6}Te_{8}}(CN)_{6}]$ -In terms of a new promising luminescent and X-ray contrast agent // Nanomedicine NBM. – 2017. – V. 13, No. 2. – P. 755-763.

4. Cordier S., Molard Y., Brylev K.A., Mironov Y.V., Grasset F., Fabre B., Naumov N.G. Advances in the Engineering of Near Infrared Emitting Liquid Crystals and Copolymers, Extended Porous Frameworks, Theranostic Tools and Molecular Junctions Using Tailored Re₆ Cluster Building Blocks // J. Clust. Sci. – 2015. – V. 26, No. 1. – P. 53-81.

5. Yoshimura T., Umakoshi K., Sasaki Y., Ishizaka S., Kim H.-B., Kitamura N. Emission and metal- and ligand-centered-redox characteristics of the hexarhenium(III) clusters trans- and cis-[Re₆(μ_3 -S)₈Cl₄L₂]²⁻, where L is a pyridine derivative or pyrazine // Inorg. Chem. – 2000. – V. 39, No. 8. – P. 1765-1772.

6. Kitamura N., Ueda Y., Ishizaka S., Yamada K., Aniya M., Sasaki Y. Temperature dependent emission of hexarhenium(III) clusters $[\text{Re}_6(\mu_3-S)_8X_6]^{4-}$ (X = Cl⁻, Br⁻, and I⁻): Analysis by four excited triplet-state sublevels // Inorg. Chem. – 2005. – V. 44, No. 18. – P. 6308-6313.

7. Solovieva A.O., Kirakci K., Ivanov A.A., Kubat P., Poznaogova T.N., Miroshnichenko S.M., Vorontsova E.V., Chechushkov A.V., Trifonova K.E., Fufaeva M.S., Kretov E.I., Mironov Y.V., Poveshchenko A.F., Lang K., Shestopalov M.A. Singlet Oxygen Production and Biological Activity of Hexanuclear Chalcocyanide Rhenium Cluster Complexes $[{Re₆Q₈}(CN)₆]^{4-}$ (Q = S, Se, Te) // Inorg. Chem. – 2017. – V. 56, No. 21. – P. 13491-13499.

126

8. Наумов Н.Г., Останина Е.В., Вировец А.В., Шмидтман М., Мюллер А., Федоров
В.Е. 23-Электронные металлокластеры Re₆: синтез и кристаллическая структура (Ph₄P)₃[Re₆S₈(CN)₆], (Ph₄P)₂(H)[Re₆Se₈(CN)₆]·8H₂O и (Et₄N)₂(H)[Re₆Te₈(CN)₆]·2H₂O // Изв.
АН, Сер. хим. – 2002. – №. 5. – С. 799-803.

9. Litvinova Y.M., Gayfulin Y.M., Kovalenko K.A., Samsonenko D.G., van Leusen J., Korolkov I.V., Fedin V.P., Mironov Y.V. Multifunctional Metal-Organic Frameworks Based on Redox-Active Rhenium Octahedral Clusters // Inorg. Chem. – 2018. – V. 57, No. 4. – P. 2072-2084.

 Litvinova Y.M., Gayfulin Y.M., van Leusen J., Samsonenko D.G., Lazarenko V.A., Zubavichus Y.V., Kogerler P., Mironov Y.V. Metal-organic frameworks based on polynuclear lanthanide complexes and octahedral rhenium clusters // Inorg. Chem. Front. – 2019. – V. 6, No. 6. – P. 1518-1526.

11. Mironov Y.V., Naumov N.G., Brylev K.A., Efremova O.A., Fedorov V.E., Hegetschweiler K. Rhenium-chalcogenide-cyano clusters, Cu^{2+} ions, and 1,2,3,4-tetraaminobutane as molecular building blocks for chiral coordination polymers // Angew. Chem. Int. Ed. – 2004. – V. 43, No. 10. – P. 1297-1300.

Efremova O.A., Mironov Y.V., Fedorov V.E. Design of cyano-bridged coordination polymers based on tetrahedral rhenium cluster cyanide complexes and 3d transition metals // Eur. J. Inorg. Chem. – 2006. – V. 2006, No. 13. – P. 2533-2549.

13. Gayfulin Y.M., Naumov N.G., Rizhikov M.R., Smolentsev A.I., Nadolinny V.A., Mironov Y.V. Heterometallic clusters with a new { $Re_3Mo_3S_8$ } core: direct synthesis, properties and DFT calculations // Chem. Commun. – 2013. – V. 49, No. 85. – P. 10019-10021.

Muravieva V.K., Gayfulin Y.M., Ryzhikov M.R., Novozhilov I.N., Samsonenko D.G.,
Piryazev D.A., Yanshole V.V., Naumov N.G. Mixed-metal clusters with a {Re₃Mo₃Se₈} core:
from a polymeric solid to soluble species with multiple redox transitions // Dalton Trans. – 2018.
– V. 47, No. 10. – P. 3366-3377.

15. Muravieva V.K., Gayfulin Y.M., Lappi T.I., Dorcet V., Sukhikh T.S., Lemoine P., Ryzhikov M.R., Mironov Y.V., Cordier S., Naumov N.G. Apical Cyanide Ligand Substitution in Heterometallic Clusters $[Re_3Mo_3Q_8(CN)_6]^{n-}$ (Q = S, Se) // Eur. J. Inorg. Chem. – 2019. – V. 2019, No. 22. – P. 2685-2690.

16. Malatesta L. Rhenium(III) Iodide // Inorg. Synth. – 1963. – V. 7, No. 7. – P. 185-189.

17. Bennett M.J., Cotton F.A., Foxman B.M. Crystal and molecular structure of trirhenium nonaiodide // Inorg. Chem. – 1968. – V. 7, No. 8. – P. 1563–1569.

18. Jung B., Meyer G. Tri- μ -Iodohexachlorotriaquotrirhenate(III)-3-Hydrate and Tri- μ -Iodohexachlorotriaquotrirhenate(III)-2,5-Hydrate [Re₃(μ -I)₃Cl₆(H₂O)₃]·3H₂O and [Re₃(μ -I)₃Cl₆(H₂O)₃]·2,5H₂O // J. Alloy. Compd. – 1992. – V. 183. – P. 144-157.

19. Jung B., Meyer G. Synthesis, Crystal-Structure and Thermal-Behavior of $Cs_{1,5}[Re_3I_3Cl_{7,5}(H_2O)_{1,5}]$ // Z. Anorg. Allg. Chem. – 1992. – V. 610, No. 4. – P. 15-19.

20. Romiti P., Freni M., Dalfonso G. Polynuclear Isocyanide Complexes of Rhenium // J. Organomet. Chem. – 1977. – V. 135, No. 3. – P. 345-349.

21. Krawczyk M.K., Krawczyk M.S., Siczek M., Lis T. Products of reactions between ReX_3 (X = Cl, I) and N-heterocyclic compounds - Structural and spectroscopic studies // Inorg. Chim. Acta. - 2014. - V. 418. - P. 84-92.

22. Ермолаев А.В., Шестопалов М.А., Куратьева Н.В., Миронов Ю.В. Кристаллическая структура *транс*-[ReO₂(3,5-lut)₄]I₃ // Журн. структ. химии. – 2015. – Т. 56, №. 7. – С. 1501-1503.

23. Glicksman H.D., Walton R.A. A high-yield synthesis of rhenium(III) iodide and the isolation and characterization of β -molybdenum(II) iodide // Inorg. Chem. – 1978. – V. 17, No. 1. – P. 200-201.

24. Krawczyk M.S., Krawczyk M.K., Siczek M., Lis T. First oxido-bridged cubo-octahedral hexanuclear rhenium clusters // Inorg. Chem. – 2014. – V. 53, No. 13. – P. 6578-6584.

25. Cotton F.A., Maque J.T. The existence of the Re₃Cl₉ cluster in anhydrous rhenium(III) chloride and its persistence in solutions of rhenium(III) chloride // Inorg. Chem. – 1964. – V. 3. – P. 1402-1407.

26. Jung B., Ehrhardt H., Meyer G. [Re₃Br₉(H₂O)]·H₂O - a precursor to ReBr₃ in the ReCl₃type structure // Z. Anorg. Allg. Chem. – 1991. – V. 603, No. 12. – P. 49-56.

27. Widervanck J.C., Jellinek F. The dichalcogenides of technetium and rhenium // J. Less-Common Met. – 1971. – V. 24. – P. 73-81.

Murray H.H., Kelty S.P., Chianelli R.R., Day C.S. Structure of rhenium disulfide // Inorg.
 Chem. – 1994. – V. 33, No. 19. – P. 4418-4420.

29. Klaiber F., Petter W., Hulliger F. The structure type of Re_2Te_5 , a new [M₆X₁₄] cluster compound // J. Solid. State. Chem. – 1983. – V. 46, No. 1. – P. 112-120.

30. Ivanov A.A., Konovalov D.L., Pozmogova T.N., Solovieva A.O., Melnikov A.R., Brylev K.A., Kuratieva N.V., Yanshole V.V., Kirakci K., Lang K., Cheltygmasheva S.N., Kitamura N., Shestopalova L.V., Mironov Y.V., Shestopalov M.A. Water-soluble Re₆-clusters with aromatic phosphine ligands - from synthesis to potential biomedical applications // Inorg. Chem. Front. – 2019. – V. 6, No. 4. – P. 882-892.

31. Amela-Cortes M., Cordier S., Naumov N.G., Meriadec C., Artzner F., Molard Y. Hexacyano octahedral metallic clusters as versatile building blocks in the design of extended polymeric framework and clustomesogens // J. Mater. Chem. C - 2014. – V. 2, No. 46. – P. 9813-9823.

32. Tulsky E.G., Crawford N.R.M., Baudron S.A., Batail P., Long J.R. Cluster-to-metal magnetic coupling: Synthesis and characterization of 25-electron $[Re_{6-n}Os_nSe_8(CN)_6]^{(5-n)-}$ (n=1, 2) clusters and $\{Re_{6-n}Os_nSe_8[CNCu(Me_6tren)]_6\}^{9+}$ (n=0, 1, 2) assemblies // J. Am. Chem. Soc. – 2003. – V. 125, No. 50. – P. 15543-15553.

33. Muravieva V.K., Gayfulin Y.M., Prestipino C., Lemoine P., Ryzhikov M.R., Yanshole V.V., Cordier S., Naumov N.G. Tailoring Heterometallic Cluster Functional Building Blocks: Synthesis, Separation, Structural and DFT Studies of [Re_{6-x}Mo_xSe₈(CN)₆]ⁿ⁻ // Chem. Eur. J. – 2019. – V. 25, No. 66. – P. 15040-15045.

34. Muravieva V.K., Loginov I.P., Sukhikh T.S., Ryzhikov M.R., Yanshole V.V., Nadolinny V.A., Dorcet V., Cordier S., Naumov N.G. Synthesis, Structure, and Spectroscopic Study of Redox-Active Heterometallic Cluster-Based Complexes [Re₅MoSe₈(CN)₆]ⁿ // Inorg. Chem. – 2021. – V. 60, No. 12. – P. 8838-8850.

Noddak I., Noddak W. Oxygen and Halogen Compounds of Rhenium // Anorg. Allgem.
 Chem. – 1933. – V. 215, No. 2. – P. 129-184.

36. Fedorov V.E., Mironov Y.V., Fedin V.P., Imoto H., Saito T. Re₄S₄Te₄ // Acta. Crystallogr. C. – 1996. – V. 52. – P. 1065-1067.

37. Федоров В.Е., Миронов Ю.В., Федин В.П., Миронов Ю.И. Re₄S₄Te₄ - новый смешанный халькогенид рения, содержащий тетраэдрический Re₄-кластер // Журн. структ. химии. – 1994. – Т. 35, №. 1. – С. 157-159.

38. Schulz Lang E., Abram U., Strahle J. Synthese und struktur von $\text{Re}_4(\mu_3-\text{Te})_4(\text{TeBr}_2)_4\text{Br}_8$ // Z. Anorg. Allg. Chem. – 1996. – V. 622. – P. 251-253.

39. Bronger W., Loevenich M. Rb₄Re₆S₁₂, synthesis and structure // J. Alloy. Compd. – 1994.
– V. 216, No. 1. – P. 29-32.

40. Bronger W., Loevenich M., Schmitz D., Schuster T. $Cs_4Re_6S_{13}$ and $Cs_4Re_6S_{13.5}$ - two compounds with [Re_6S_8] clusters slightly differing as to their framework structures // Z. Anorg. Allg. Chem. – 1990. – V. 587, No. 8. – P. 91-102.

41. Bronger W., Miessen H.J., Muller P., Neugroschel R. Synthesis and crystal-structure of Li₄Re₆S₁₁ // J. Less-Common Met. – 1985. – V. 105, No. 2. – P. 303-310.

42. Bronger W., Miessen H.J., Neugroschel R., Schmitz D., Spangenberg M. Alkali-metal rhenium sulfides and selenides containing $[Re_6X_8]$ clusters // Z. Anorg. Allg. Chem. – 1985. – V. 525, No. 6. – P. 41-53.

43. Bronger W., Spangenberg M. Sodium thiorhenate ($Na_2Re_3S_6$) and potassium thiorhenate ($K_2Re_3S_6$), two thiorhenates with [Re_6S_8] clusters // J. Less-Common Met. – 1980. – V. 76, No. 1-2. – P. 73-79.

44. Spangenberg M., Bronger W. Ternary rhenium sulfides with [Re₆S₈]-clusters // Angew. Chem. Int. Edit. – 1978. – V. 17, No. 5. – P. 368-369.

45. Leduc L., Perrin A., Sergent M., Letraon F., Pilet J.C., Letraon A. Rhenium octahedral clusters - characterization of $Re_6Se_4Cl_{10}$ and the parent compound $Re_6S_4Br_{10}$ // Mater. Let. – 1985. – V. 3, No. 5-6. – P. 209-215.

46. Яровой С.С. Халькобромидные октаэдрические кластерные комплексы рения(III): Дисс. на соискание ученой степени кандидата химических наук: 02.00.01 / Яровой С.С., ИНХ СО РАН. – Новосибирск, 2000. – 178 с.

47. Perrin A., Leduc L., Sergent M. Halogen bridged Re₆l₈ units in octahedral cluster rhenium chalcohalides // Eur. J. Sol. State. Inor. – 1991. – V. 28, No. 5. – P. 919-931.

48. Fischer C., Alonsovante N., Fiechter S., Tributsch H., Reck G., Schulz W. Structure and photoelectrochemical properties of semiconducting rhenium cluster chalcogenides - $\text{Re}_6\text{X}_8\text{Br}_2$ (X = S, Se) // J. Alloy. Compd. – 1992. – V. 178. – P. 305-314.

49. Speziali N.L., Berger H., Leicht G., Sanjines R., Chapuis G., Levy F. Single-crystal growth, structure and characterization of the octahedral cluster compound Re₆Se₈Br₂ // Mater. Res. Bull. – 1988. – V. 23, No. 11. – P. 1597-1604.

50. Яровой С.С., Миронов Ю.В., Ткачев С.В., Федоров В.Е. Фазообразование в системах Re-Se-Br-MBr (M = Li, Na, K, Rb, Cs) // Журн. неорг. химии. – 2009. – Т. 54, №.
2. – С. 344-349.

51. Fischer C., Fiechter S., Tributsch H., Reck G., Schultz B. Crystal structure and thermodynamic analysis of the new semiconducting chevrel phase $\text{Re}_6\text{S}_8\text{Cl}_2$ // Ber. Bunsen. Phys. Chem. – 1992. – V. 96, No. 11. – P. 1652-1658.

52. Mironov Y.V., Fedorov V.E., McLauchlan C.C., Ibers J.A. Layered $K_4[Re_6S_{10}(CN)_2]$ and chainlike $K_4[Re_6Se_{10}(CN)_4]$: new types of chalocyanide cluster compounds with bridging chalcogenide ligands // Inorg. Chem. – 2000. – V. 39, No. 8. – P. 1809-1811.

53. Mironov Y.V., Naumov N.G., Kozlova S.G., Kim S.-J., Fedorov V.E. [Re₁₂CS₁₇(CN)₆]ⁿ⁻ (n=6, 8): a sulfido-cyanide rhenium cluster with an interstitial carbon atom // Angew. Chem. Int. Edit. – 2005. – V. 44, No. 42. – P. 6867-6871.

54. Naumov N.G., Kim S.-J., Virovets A.V., Mironov Y.V., Fedorov V.E. New rhenium octahedral cluster sulfido-cyanide chain polymer: The synthesis and crystal structure of $Cs_4[{Re_6S_8}(CN)_4S_{2/2}]$ // B. Kor. Chem. Soc. – 2006. – V. 27, No. 5. – P. 635-636.

55. Имото Х., Наумов Н.Г., Вировец А.В., Саито Т., Федоров В.Е. Примитивная кубическая упаковка анионов в кристаллах Cs4[Re₆Te₈(CN)₆]·2H₂O и Ba₂[Re₆Te₈(CN)₆]·12H₂O // Журн. структ. химии. – 1998. – Т. 39, №. 5. – С. 885-893.

56. Slougui A., Mironov Y.V., Perrin A., Fedorov V.E. An octahedral rhenium cluster with CN ligands: The crystal structure of KCs₃Re₆S₈(CN)₆ // Croat. Chem. Acta. – 1995. – V. 68, No. 4. – P. 885-890.

57. Mironov Y.V., Virovets A.V., Fedorov V.E., Podberezskaya N.V., Shishkin O.V., Struchkov Y.T. Synthesis and crystal structure of a hexanuclear rhenium cluster complex $Cs_3K[Re_6(\mu_3-S)_6(\mu_3-Te_{0.66}S_{0.34})_2(CN)_6]$ - cationic control over orientation of the cluster anion // Polyhedron. – 1995. – V. 14, No. 20-21. – P. 3171-3173.

58. Федоров В.Е., Миронов Ю.И., Миронов Ю.В., Наумов Н.Г., Пэк У.Х., Син С. Фазы переменного состава [Re₆Te_{8-x}Y_x]Te₇ (Y = S, Se) на основе теллурида рения // Журн. неорг. химии. – 1998. – Т. 43, №. 11. – С. 1916-1920.

59. Федоров В.Е., Ткачев С.В., Наумов Н.Г., Миронов Ю.В., Миронов Ю.И. Ступенчатое замещение µ₃-Те лигандов в октаэдрическом кластерном ядре {Re₆Te₈}²⁺: ЯМР-спектроскопическое доказательство равновесия между химическими формами // Журн. неорг. химии. – 1998. – Т. 43, №. 10. – С. 1683-1693.

60. Mironov Y.V., Cody J.A., AlbrechtSchmitt T.E., Ibers J.A. Cocrystallized mixtures and multiple geometries: Syntheses, structures, and NMR spectroscopy of the Re₆ clusters

 $[NMe_4]_4[Re_6(Te_{8-n}Se_n)(CN)_6]$ (n=0-8) // J. Am. Chem. Soc. – 1997. – V. 119, No. 3. – P. 493-498.

61. Fedin V.P., Fedorov V.E., Imoto H., Saito T. The first complex with TeI₂ ligands: Synthesis and structure of $[\text{Re}_6\text{Te}_8(\text{TeI}_2)_6]^{-2}$ // Polyhedron. – 1997. – V. 16, No. 10. – P. 1615-1619.

62. Mironov Y.V., Kim S.-J., Fedorov V.E. Rhenium tellurobromide $\text{Re}_6\text{Te}_{16}\text{Br}_6$ // B. Kor. Chem. Soc. – 2006. – V. 27, No. 6. – P. 939-940.

63. Beck J., Muller-Buschbaum K. Synthesis and crystal structure of [Re₂Br₄(Te₂)(TeBr₂)₂], a dinuclear complex with Te₂²⁻, TeBr⁻, and TeBr₂ ligands // Eur. J. Inorg. Chem. – 1999. – V. 1999, No. 5. – P. 839-842.

64. Beck J., Mueller-Buschbaum K. Uber chalkogenidhalogenide des rheniums: Synthese und kristallstrukturen der dreieckscluster $\text{Re}_3\text{E}_7\text{X}_7$ (E = S, Se; X = Cl, Br) // Z. Anorg. Allg. Chem. – 1999. – V. 625. – P. 1212-1216.

65. Mironov Y.V., AlbrechtSchmitt T.E., Ibers J.A. Syntheses and characterizations of the new tetranuclear rhenium cluster compounds $\text{Re}_4(\mu_3-\text{Q})_4(\text{TeCl}_2)_4\text{Cl}_8$ (Q=S, Se, Te) // Inorg. Chem. – 1997. – V. 36, No. 5. – P. 944-946.

66. Gabriel J.C., Boubekeur K., Batail P. Molecular hexanuclear clusters in the system rhenium sulfur chlorine - solid-state synthesis, solution chemistry, and redox properties // Inorg. Chem. – 1993. – V. 32, No. 13. – P. 2894-2900.

67. Leduc L., Padiou J., Perrin A., Sergent M. Synthesis and characterization of a new chalcohalogenide with octahedral rhenium clusters of bidimensional character - $Re_6Se_8Cl_2$ // J. Less-Common Met. – 1983. – V. 95, No. 1. – P. 73-80.

68. Mironov Y.V., Pell M.A., Ibers J.A. Te₆, $[Te_8Cl_{18}]^{2-}$, and $[TeCl_3]^{-}$: New tellurium and chlorotellurato ligands in the Re₆ solid-state cluster compounds Re₆Te₁₆Cl₁₈ and Re₆Te₁₆Cl₆ // Angew. Chem. Int. Edit. – 1996. – V. 35, No. 23-24. – P. 2854-2856.

69. Mironov Y.V., Cody J.A., Ibers J.A. Hexachlorotetra-μ₃-chloro-tetra-μ₃-tellurooctohexarhenium(III) // Acta Crystallogr. C. – 1996. – V. 52. – P. 281-283.

70. Mironov Y.V., Pell M.A., Ibers J.A. The new inorganic ligands $TeCl_2$ and $TeBr_2$: Syntheses and crystal structures of $Re_6Te_6Cl_6(TeCl_2)_2$ and $[Re_6Te_8(TeBr_2)_6]Br_2$ // Inorg. Chem. - 1996. - V. 35, No. 10. - P. 2709-2710.

71. Yarovoi S.S., Mironov Y.I., Mironov Y.V., Virovets A.V., Fedorov V.E., Paek U.H., Shin S.C., Seo M.L. Synthesis of octahedral rhenium cluster chalcobromides Re₆X₄Br₁₀ and Re₆X₈Br₂

(X=S, Se, Te) by condensation from triangular rhenium bromide Re₃Br₉ // Mater. Res. Bull. – 1997. – V. 32, No. 9. – P. 1271-1277.

72. Perricone A., Slougui A., Perrin A. Rhenium octahedral clusters: the systems Re-S-Br and M-Re-S-Br (M = Na, K, Rb, Cs) // Solid State Sci. – 1999. – V. 1, No. 7-8. – P. 657-666.

73. Солодовников С.Ф., Миронов Ю.В., Яровой С.С., Вировец А.В., Федоров В.Е. Кристаллохимия октаэдрических халькогалогенидов рения Re₆X₄Y₁₀ (X = S, Se, Te; Y = Cl, Br) // Хим. инт. уст. разв. – 2000. – Т. 8, №. 1. – С. 285-290.

74. Миронов Ю.В., Федоров В.Е., Пелл М.А., Айберс Д.А. Октаэдрические теллуробромидные кластеры рения: синтез и кристаллическая структура [NPr₄]₂[Re₆Te₆Br₈] и [PPh₄][Re₆Te₅Br₉] // Журн. структ. химии. – 1998. – Т. 39, №. 4. – С. 746-752.

75. Fedorov V.E., Elsegood M.R.J., Yarovoi S.S., Mironov Y.V. $[Re_9Se_{11}Br_6]^{2-}$: the first example of an Re₉ condensed cluster // Chem. Commun. – 1998. – No. 17. – P. 1861-1862.

76. Наумов Н.Г., Вировец А.В., Подберезская Н.В., Федоров В.Е. Синтез и кристаллическая структура К4[Re₆Se₈(CN)₆]·3,5H₂O // Журн. структ. химии. – 1997. – Т. 38, №. 5. – С. 1018-1024.

77. Naumov N.G., Artemkina S.B., Virovets A.V., Fedorov V.E. Adjustment of dimensionality in covalent frameworks formed by Co^{2+} and rhenium cluster chalcocyanide $[Re_6S_8(CN)_6]^{4-}$ // Solid State Sci. – 1999. – V. 1, No. 7-8. – P. 473-482.

78. Yarovoi S.S., Mironov Y.V., Naumov D.Y., Kozlova S.G., Kim S.-J., Fedorov V.E. Octahedral hexahydroxo rhenium cluster complexes $[\text{Re}_6\text{Q}_8(\text{OH})_6]^{4-}$ (Q = S, Se): synthesis, structure, and properties // Eur. J. Inorg. Chem. – 2005. – V. 2005, No. 19. – P. 3945-3949.

79. Брылев К.А., Миронов Ю.В., Ким С.-Д., Федоров В.Е. Кристалличская структура октаэдрических кластерных комплесов рения Cs4[Re₆S₈(OH)₆]·6H₂O и Cs4[Re₆Se₈(OH)₆]·8H₂O // Журн. структ. химии - 2007. - Т. 48, - №. 6. - С. 1183-1188.

Cotton F.A., Curtis N., Johnson B., Robinson W. Compounds containing dirhenium(III) octahalide anions // Inorg. Chem. – 1965. – V. 4. – No. 3. – P. 326-330.

81. Mueller A., Krickemeyer E., Wittneben V., Boegge H., Lemke M. $(NH_4)_2[Re_2S_{16}]$, a soluble metal sulfide with interesting electronic properties and unusual reactivity // Angew. Chem. Int. Ed. – 1991. – V. 103, No. 11. – P. 1512-1514.

82. McConnachie C.A., Stiefel E.I. Ligand and tetrathiometalate effects in induced internal electron transfer reactions // Inorg. Chem. – 1999. – V. 38, No. 5. – P. 964-972.

83. Тимощенко Н.Н., Колесниченко В.Л., Волков С.В., Словохотов Ю.Л., Стручков
Ю.Т. Синтез и структура первого трехъядерного кластерного халькогалогенида рения //
Коорд. Химия. – 1990. – Т. 16, №. 8. – С. 1062-1066.

84. Aslanov L.A., Volkov S.V., Kolesnichenko V.L., Mischanchuk T.B., Rybakov V.B., Timoshchenko N.I. 3-nuclear cluster rhenium thiohalogenides(V) with ion structure // Ukr. Khim. Zh. – 1991. – V. 57, No. 7. – P. 675-680.

85. Miyake N., Imoto H., Saito T. Synthesis and structure of a trinuclear rhenium cluster complex [PEt₃H][Re₃(μ₃-S)(μ-S)₃Cl₆(PEt₃)₃] // Chem. Lett. – 1997. – No. 9. – P. 913-914.

86. Sokolov M., Imoto H., Saito T. Synthesis and structure of SO₂ bridged trinuclear Re cluster (Et₄N)[Re₃(μ₃-S)(μ-SO₂)(μ-S)₂Cl₆(PEt₃)₃] // Chem. Lett. – 1998. – No. 9. – P. 949-950.

87. Saito T., Sunaga T., Sakai N., Nakamura Y., Yamamoto S., Iriuchijima D., Yoza K. Oxygen atom transfer reactions from dioxygen to phosphines via a bridging sulfur dioxide in a trinuclear cluster complex of rhenium, $[(Ph_3P)_2N][Re_3(\mu_3-S)(\mu-S)_2(\mu-SO_2)Cl_6(PMe_2Ph)_3]$ // Inorg. Chem. – 2005. – V. 44, No. 12. – P. 4427-4432.

88. Miyake N., Imoto H., Saito T. Synthesis of a mixed-metal cluster complex of rhenium and nickel [Re₃NiS₄Cl₆(PEt₃)₄] // Chem. Lett. – 1997. – No. 7. – P. 631-632.

89. Iijima K., Sunaga T., Hirose M., Saito T. Synthesis and characterization of rheniumcopper complexes [(Ph₃P)₂N][Re₃(CuX)(μ_3 -S)₄Cl₆(PMe₂Ph)₃] sulfide cluster (X = Cl, Br, I) // Inorg. Chem. – 2006. – V. 45, No. 8. – P. 3452-3455.

90. Sakai N., Saito T. Synthesis and structures of tetranuclear rhenium-cobalt mixed metal sulfide clusters [Re₃CoS₄Cl₆(PMe₂Ph)₄] // Polyhedron. – 2004. – V. 23, No. 17. – P. 2611-2614.
91. Sakamoto H., Watanabe Y., Saito T. Synthesis of Im₃[Re₃(μ₃-S)(μ-S)₃Br₉]Br (Im=1-ethyl-3-methylimidazolium) by means of an ionic liquid // Inorg. Chem. – 2006. – V. 45, No. 12. – P. 4578-4579.

92. Petrov P.A., Virovets A.V., Bogomyakov A.S., Llusar R., Gomez-Garcia C.J., Polo V., Konchenko S.N. Synthesis, molecular and electronic structure of an incomplete cuboidal Re₃S₄ cluster with an unusual quadruplet ground state // Chem. Commun. – 2012. – V. 48, No. 21. – P. 2713-2715.

93. Петров П.А., Афонин М.Ю., Наумов Д.Ю., Богомяков А.С., Конченко С.Н. Парамагнитный треугольный сульфидный кластер рения [Re₃S₄(Dppe)₃(NCS)₃]Br // Коорд. химия. – 2014. – Т. 40, №. 4. – С. 200-204.

134

94. Cotton F.A., Walton R.A., Multiple Bonds between Metal Atoms, 2nd ed. Oxford University Press: Oxford, 1993.

95. McGaff R.W., Hayashi R.K., Powell D.R., Treichel P.M. Synthesis and X-ray crystal structures of new trirhenium nonachloride chalcogenide clusters // Polyhedron. – 1998. – V. 17, No. 25-26. – P. 4425-4431.

96. Yarovoy S.S., Gayfulin Y.M., Smolentsev A.I., Yanshole V.V., Mironov Y.V. Stabilization of $\text{Re}_3^{7+}/\text{Re}_3^{8+}$ Metalloclusters by Cyanide Ligands in New Trinuclear Rhenium Cluster Complexes [$\{\text{Re}_3X_3\}(\text{CN})_9$]⁴⁻/[$\{\text{Re}_3X_3\}(\text{CN})_9$]⁵⁻ (X = Br or I) // Inorg. Chem. – 2021. – V. 60, No. 8. – P. 5980-5987.

97. Petrov P.A., Sukhikh T.S., Nadolinny V.A., Mikhaylov M.A., Lavrov A.N., Dmitriev A.A., Gritsan N.P., Sokolov M.N. Paramagnetic Rhenium Iodide Cluster with N-Heterocyclic Carbene // Inorg. Chem. – 2021. – V. 60, No. 9. – P. 6746-6752.

98. Михайлов М.А., Сухих Т.С., Соколов М.Н. Сольвотермальный подход к синтезу иодидных и бромидных треугольных кластерных комплексов Re(III) // Журн. неорг. химии. – 2021. – Т. 66, №. 7. – С. 863-868.

99. Muller A., Krickemeyer E., Bogge H., Armatage A. A building principle of amorphous chalcogenides of transition metals - the extrusion of the electron-rich cluster $[\text{Re}_4\text{S}_2(\text{SO}_2)_4(\text{CN})_{10}]^{8-}$ from α -Re₂S₇ // Angew. Chem. Int. Edit. – 1994. – V. 33, No. 7. – P. 770-773.

100. Fedin V.P., Elsegood M.R.J., Clegg W., Sykes A.G. High-yield synthesis of the cuboidal rhenium cluster [Re₄S₄(CN)₁₂]⁴⁻ by reaction of the triangular cluster [Re₃S₇Br₆]⁺ with cyanide // Polyhedron. – 1996. – V. 15, No. 3. – P. 485-488.

101. Muller A., Krickemeyer E., Bogge H. $[{Re_4(\mu_3-S)_4}(\mu-S_3)_6]^{4-}$, a highly symmetrical metal-sulfur cluster with six S₃-ligands // Angew. Chem. Int. Edit. – 1986. – V. 25, No. 3. – P. 272-273.

102. Muller A., Krickemeyer E., Bogge H. Entry to the chemistry of simple rhenium sulfur complexes and clusters - preparation and crystal structures of R[ReS₄], R'[ReS₉], $(NH_4)_4[Re_4S_{22}]\cdot 2H_2O$, R'₂[Cl₂Fe(MoS₄)FeCl₂]_x[Cl₂Fe(ReS₄)FeCl₂]_{1-x}, R'₂[(ReS₄)Cu₃I₄] und RR'₂[(ReS₄)Cu₅Br₇] (R = NEt₄; R' = PPh₄; x = 0,3, 0,5) // Z. Anorg. Allg. Chem. – 1987. – V. 554, No. 11. – P. 61-78.

103. Mironov Y.V., Pell M.A., Albrecht-Schmitt T.E., Ibers J.A. The mixed polychalcogenorhenate(IV) anions $[\text{Re}_4\text{Q}_4(\text{S}_3)_4(\text{S}_4)_2]^{4-}$ (Q = Se, Te): Syntheses and crystal

structures of $[NMe_4]_5[Me_2NH_2]_3[Re_4Se_4(S_3)_4(S_4)_2]_2 \cdot 2.25H_2O$ and

[NH4]4[Re4Se4(S3)4(S4)2]·8H2O // Inorg. Chem. - 2001. - V. 40, No. 21. - P. 5472-5474.

104. Mironov Y.V., Virovets A.V., Sheldrick W.S., Fedorov V.E. Novel inorganic polymeric compounds based on the Re₄ chalcocyanide cluster complexes: synthesis and crystal structures of $Mn_2[Re_4Se_4(CN)_{12}]\cdot 6H_2O$, $Cd_2[Re_4Te_4(CN)_{12}]\cdot 6H_2O$, $Cu_2[Re_4Te_4(CN)_{12}]\cdot 4H_2O$ and $K_4Re_4Se_4(CN)_{12}\cdot 6H_2O$ // Polyhedron. – 2001. – V. 20, No. 9-10. – P. 969-974.

105. Миронов Ю.В., Вировец А.В., Артёмкина С.Б., Фёдоров В.Е. Кристаллическая структура теллуроцианидного кластерного комплекса К₄[Re₄Te₄(CN)₁₂]·5H₂O // Журн. структ. химии. – 1999. – Т. 40, №. 2. – С. 375-379.

106. Mironov Y.V., Albrecht-Schmitt T.E., Ibers J.A. Crystal structure of tetracesium dodecacyano-tetra- μ_3 -tellurorhenate(IV)tetrahydrate, Cs₄[Re₄Te₄(CN)₁₂]·4H₂O // Z. Krist-New Cryst. St. – 1997. – V. 212, No. 3. – P. 308-308.

107. Миронов Ю.В., Ефремова О.А., Яровой С.С., Федоров В.Е. Четырехъядерные халькохлоридные кластерные комплексы рения Cs₃H[Re₄Q₄Cl₁₂]·3.33H₂O (Q = Se, Te). Синтез и строение // Коорд. химия. – 2009. – Т. 35, №. 5. - С. 323-325.

108. Mironov Y.V. Syntheses and crystal structures of $(Pr_4N)_2Re_4Q_4(CH_3CONH)_2Cl_8$ (Q = S, Se) - Conversion of solvent CH₃CN into the acetamido ligand // Eur. J. Inorg. Chem. – 1999. – V. 1999, No. 6. – P. 997-999.

109. Mironov Y.V., Albrecht-Schmitt T.E., Smith D.M., Ibers J.A. Crystal structure of
octachlorotetra(μ_3 -telluro)tetradimethylform-amidotetrarhenium(IV)dimethylformamide,
dimethylformamide,
C15H35Cl_8N5O5Re4Te4 // Z. Krist-New Cryst. St. - 2001. - V. 216, No. 4. - P. 517-518.

110. Efremova O.A., Mironov Y.V., Brylev K.A., Fedorov V.E., Pietzsch H.J., Stephan H. Isomerism in tetrahedral rhenium cluster complexes $[Re_4Q_4(PMe_2Ph)_4X_8] \cdot nCH_2Cl_2$ (Q = Se, X = Br; Q = Te, X = Cl, Br) // Polyhedron. – 2009. – V. 28, No. 14. – P. 2973-2976.

111. Zheng Z.P., Long J.R., Holm R.H. A basis set of Re_6Se_8 cluster building blocks and demonstration of their linking capability: Directed synthesis of an $Re_{12}Se_{16}$ dicluster // J. Am. Chem. Soc. – 1997. – V. 119, No. 9. – P. 2163-2171.

112. Willer M.W., Long J.R., McLauchlan C.C., Holm R.H. Ligand substitution reactions of [Re₆S₈Br₆]⁴: A basis set of Re₆S₈ clusters for building multicluster assemblies // Inorg. Chem. – 1998. – V. 37, No. 2. – P. 328-333.

113. Dorson F., Molard Y., Cordier S., Fabre B., Efremova O., Rondeau D., Mironov Y., Circu V., Naumov N., Perrin C. Selective functionalisation of Re₆ cluster anionic units: from hexa-

hydroxo $[\text{Re}_6\text{Q}_8(\text{OH})_6]^{4-}$ (Q = S, Se) to neutral trans- $[\text{Re}_6\text{Q}_8\text{L}_4\text{L}'_2]$ hybrid building blocks // Dalton Trans. – 2009. – No. 8. – P. 1297-1299.

114. Brylev K.A., Mironov Y.V., Kozlova S.G., Fedorov V.E., Kim S.J., Pietzsch H.J., Stephan H., Ito A., Ishizaka S., Kitamura N. The First Octahedral Cluster Complexes With Terminal Formate Ligands: Synthesis, Structure, and Properties of $K_4[Re_6S_8(HCOO)_6]$ and $Cs_4[Re_6S_8(HCOO)_6]$ // Inorg. Chem. – 2009. – V. 48, No. 5. – P. 2309-2315.

115. Brylev K.A., Mironov Y.V., Fedorov V.E., Kim S.J., Pietzsch H.J., Stephan H., Ito A., Kitamura N. A new hexanuclear rhenium cluster complex with six terminal acetate ligands: Synthesis, structure, and properties of $K_4[Re_6S_8(CH_3COO)_6] \cdot 8H_2O$ // Inorg. Chim. Acta. – 2010. – V. 363, No. 11. – P. 2686-2691.

116. Gandubert A., Brylev K.A., Nguyen T.T., Naumov N.G., Kitamura N., Molard Y., Gautier R., Cordier S. Synthesis and Crystal Structure of the Azide $K_4[Re_6Se^i_8(N_3)^a_6]\cdot 4H_2O$; Luminescence, Redox, and DFT Investigations of the $[Re_6Se^i_8(N_3)^a_6]^{4-}$ Cluster Unit // Z. Anorg. Allg. Chem. – 2013. – V. 639, No. 10. – P. 1756-1762.

117. Mironov Y.V., Brylev K.A., Smolentsev A.I., Ermolaev A.V., Kitamura N., Fedorov V.E. New mixed-ligand cyanohydroxo octahedral cluster complex trans- $[Re_6S_8(CN)_2(OH)_4]^{4-}$, its luminescence properties and chemical reactivity // Rsc Adv. – 2014. – V. 4, No. 105. – P. 60808-60815.

118. Perrin A., Perrin C., Sergent M. Octahedral Clusters in Molybdenum(II) and Rhenium(III) Chalcohalide Chemistry // J. Less-Common Met. – 1988. – V. 137, No. 1-2. – P. 241-265.

119. Yaghi O.M., Scott M.J., Holm R.H. Rhenium Selenium Chlorine Solid-Phases - Cluster Excision and Core Substitution-Reactions of Molecular-Species // Inorg. Chem. – 1992. – V. 31, No. 23. – P. 4778-4784.

120. Uriel S., Boubekeur K., Batail P., Orduna J., Canadell E. Solution Chemistry of Chalcohalide Hexanuclear Rhenium Cluster Monoanions - Substitution-Reactions and Structural and Lsims Characterization of the Heterosubstituted Cluster Dianions, (n- Bu_4N)₂[Re₆Q₅ECl₈] (Q = S, E = S, Se; Q = Se, E = S, Se, Te) // Inorg. Chem. – 1995. – V. 34, No. 21. – P. 5307-5313.

121. Uriel S., Boubekeur K., Batail P., Orduna J. μ_3 -imido-functionalized Chevrel-Sergenttype molecular clusters, a new class of inorganic-organic hybrid compounds: Preparations and alkylation reactions // Angew. Chem. Int. Edit. – 1996. – V. 35, No. 13-14. – P. 1544-1547. 122. Decker A., Simon F., Boubekeur K., Fenske D., Batail P. Neutral and cationic hexanuclear rhenium phosphine clusters with μ_3 -(phosphido-chalcogenido), μ_3 -(arsenido-chalcogenido), and μ_3 -(imido or oxo-chalcogenido) hetero ligand shells // Z. Anorg. Allg. Chem. – 2000. – V. 626, No. 1. – P. 309-313.

123. Fedin V.P., Imoto H., Saito T., Fedorov V.E., Mironov Y.V., Yarovoi S.S. Molecular octahedral sulfido-bromide rhenium clusters: Synthesis and crystal structure of (PPh₄)₂[Re₆S₆Br₈]·CH₃C₆H₅ and (PPh₄)₃[Re₆S₇Br₇] // Polyhedron. – 1996. – V. 15, No. 8. – P. 1229-1233.

124. Mironov Y.V., Shestopalov M.A., Brylev K.A., Yarovoi S.S., Romanenko G.V., Fedorov V.E., Spies H., Pietzsch H.J., Stephan H., Geipel G., Bernhard G., Kraus W. $[Re_6Q_7O(3,5-Me_2PzH)_6]Br_2\cdot3,5-Me_2PzH$ (Q = S, Se) - New octahedral rhenium cluster complexes with organic ligands: Original synthetic approach and unexpected ligand exchange in the cluster core // Eur. J. Inorg. Chem. – 2005. – V. 2005, No. 4. – P. 657-661.

125. Yarovoi S.S., Mironov Y.V., Solodovnikov S.F., Naumov D.Y., Moroz N.K., Kozlova S.G., Simon A., Fedorov V.E. Unexpected ligand substitutions in the cluster core {Re6Se8}: synthesis and structure of the novel cluster compound $Cs_{11}(H_3O)[Re_6Se_4O_4Cl_6]_3\cdot 4H_2O$ // Chem. Commun. – 2005. – No. 6. – P. 719-721.

126. Fedorov V.E., Podberezskaya N.V., Mischenko A.V., Khudorozko G.F., Asanov I.P. A Physicochemical Characterization of the Cluster-Type Rhenium Telluride Re₆Te₁₅ // Mater. Res. Bull. – 1986. – V. 21, No. 11. – P. 1335-1342.

127. Опаловский А.А., Федоров В.Е., Лобков Е.У. Взаимодействие селенидов молибдена, вольфрама и рения с газообразным бромом // Журн. неорг. химии. – 1971. – Т. 16, №. 6. – С. 1494-1496.

128. Mironov Y.V., Gayfulin Y.M., Kozlova S.G., Smolentsev A.I., Tarasenko M.S., Nizovtsev A.S., Fedorov V.E. Selective Two-Step Oxidation of μ_2 -S Ligands in Trigonal Prismatic Unit {Re₃(μ_6 -C)(μ_2 -S)₃Re₃} of the Bioctahedral Cluster Anion [Re₁₂CS₁₇(CN)₆]⁶⁻ // Inorg. Chem. – 2012. – V. 51, No. 7. – P. 4359-4367.

129. Gayfulin Y.M., Smolentsev A.I., Yanshole L.V., Kozlova S.G., Mironov Y.V. Reversible Redox Transformations of Bridging Sulfide Ligands within Bioctahedral Rhenium Cluster Anions // Eur. J. Inorg. Chem. – 2016. – V. 2016, No. 25. – P. 4066-4075.

130. Лаппи Т.И., Гайфулин Я.М., Смоленцев А.И., Миронов Ю.В. Структурная характеризация биоктаэдрического кластерного аниона [Re₁₂CS₁₄(μ-SO₂)(μ-S)₂(CN)₆]^{6−} // Журн. структ. химии. – 2017. – Т. 58, №. 4. – С. 863-865.

131. Gayfulin Y.M., Smolentsev A.I., Kozlova S.G., Novozhilov I.N., Plyusnin P.E., Kompankov N.B., Mironov Y.V. Facile Substitution of Bridging SO_2^{2-} Ligands in Re₁₂ Bioctahedral Cluster Complexes // Inorg. Chem. – 2017. – V. 56, No. 20. – P. 12389-12400.

132. Гайфулин Я.М., Смоленцев А.И., Миронов Ю.В. Строение кластерного аниона [Re₁₂CS₁₄(µ-SO₂)(µ-O)₂(CN)₆]⁶⁻ // Журн. структ. химии. – 2018. – Т. 59, №. 3. – С. 692-695.
133. Gayfulin Y.M., Brylev K.A., Ryzhikov M.R., Samsonenko D.G., Kitamura N., Mironov Y.V. Luminescent twelve-nuclear rhenium clusters // Dalton Trans. – 2019. – V. 48, No. 33. – P. 12522-12530.

134. Perrin C., Chevrel R., Sergent M. New Molybdenum Ruthenium Thio Compounds with Mixed Tetrahedral Cluster // J. Solid. State. Chem. – 1976. – V. 19, No. 3. – P. 305-308.

135. Худорожко Г.Ф., Кравцова Э.А., Мазалов Л.Н., Федоров В.Е., Булушева Л.Г., Асанов И.П., Парыгина Г.К., Миронов Ю.В. Исследование электронного строения полимерных кубанокластерных соединений Re_{4-х}Mo_xS₄Te₄ методами рентгеновской эмиссионной и рентгеноэлектронной спектроскопии // Журн. структ. химии. – 1996. – Т. 37, №. 5. – С. 901-906.

136. Perrin A., Sergent M., Fischer O. New Compounds of Type Mo₂Re₄X₈ (X=S,Se)
Containing Octahedral Mo₂Re₄ Clusters // Mater. Res. Bull. – 1978. – V. 13, No. 4. – P. 259-264.

137. Honle W., Flack H.D., Yvon K. Single-Crystal X-Ray Study of Mo_6Se_8 -Type Selenides Containing Partially Substituted (Mo,Me)₆ Clusters (Me = Ru,Re) // J. Solid. State. Chem. – 1983. – V. 49, No. 2. – P. 157-165.

Bronger W., Koppe C., Loevenich M., Schmitz D., Schuster T. Cs₃Re₅OsS₁₁, a compound containing mixed rhenium osmium clusters // Z. Anorg. Allg. Chem. – 1997. – V. 623, No. 5. – P. 695-698.

139. Tulsky E.G., Long J.R. Heterometal substitution in the dimensional reduction of cluster frameworks: Synthesis of soluble $[Re_{6-n}Os_nSe_8Cl_6]^{(4-n)-}$ (n=1-3) cluster-containing solids // Inorg. Chem. – 2001. – V. 40, No. 27. – P. 6990-7002.

140. Naumov N.G., Brylev K.A., Mironov Y.V., Virovets A.V., Fenske D., Fedorov V.E. Synthesis and structures of new octahedral water-soluble heterometal rhenium-molybdenum clusters // Polyhedron. – 2004. – V. 23, No. 4. – P. 599-603.

141. Brylev K.A., Naumov N.G., Kozlova S.G., Ryzhikov M.R., Kim S.J., Kitamura N.
Synthesis and Structures of New Octahedral Heterometal Rhenium-Osmium Cluster Complexes
// Russ. J. Coord. Chem. – 2012. – V. 38, No. 3. – P. 183-191.

142. Комиссарова П. Д., Крестовникова С. А. Цезий железистосинеродистый // в кн. Методы получения химических реактивов и препаратов, под ред. Б. Г. Козлова. - Москва: ИРЕА, 1967. - Выпуск 16. - С. 99-100.

143. SADABS, Bruker AXS Inc.: Madison, WI, USA.

144. Sheldrick G.M. Crystal structure refinement with SHELXL // Acta Crystallogr., Sect. C: Struct. Chem. – 2015. – V. 71, No. 1. – P. 3-8.

145. Tisley D.G., Walton R.A. The redox behavior of the rhenium(III) chloride-tertiary amine systems, including an investigation of reactions with pyridine, the picolines and benzimidazole // Inorg. Nucl. Chem. Lett. -1970. - V. 6. - P. 479-485.

146. Esjornson S.M.V., Fanwick P.E., Walton R.A. Structural and Spectroscopic Studies on the Trinuclear Clusters $Re_3Cl_9(PMe_3)_3$ and $Re_3Cl_9(\eta_1-dppm)_3(dppm Ph_2PCH_2PPh_2)$ // Polyhedron. – 1990. – V. 9, No. 9. – P. 1165-1173.

147. Neuman D., Paraskevopoulou P., Psaroudakis N., Mertis K., Staples R.J., Stavropoulos P. Structural and functional characteristics of rhenium clusters derived from redox chemistry of the triangular [Re₃(III)(μ -Cl)₃] core unit // Inorg. Chem. – 2000. – V. 39, No. 24. – P. 5530-5537.

148. Irmler M., Meyer G. Synthesis, Molecular and Crystal-Structure of a 2nd Rhenium Trichloride Hydrate - [Re₃Cl₉(H₂O)₃]·10H₂O // Z. Anorg. Allg. Chem. – 1990. – V. 581, No. 2. – P. 104-110.

149. Пронин А.С., Смоленцев А.И., Миронов Ю.В. Одностадийный синтез тетраэдрических халькоцианидных кластерных комплексов рения $[{Re_4(\mu_3-Q)_4}(CN)_{12}]^{4-}$ (Q = S, Se, Te) исходя из ReI₃ // Изв. AH, Cep. хим. – 2019. – №. 4. – С. 777-781.

150. Pronin A.S., Gayfulin Y.M., Smolentsev A.I., Kozlova S.G., Yanshole V.V., Mironov Y.V. The {Re₄} Tetrahedral Cyanometalate Cluster Anion [{Re₄(μ_3 -CCN)₄}(CN)₁₂]⁸⁻ with Inner (μ_3 -CCN)³⁻ Ligands and Its Features in Coordination of Cu²⁺ Cations // Inorg. Chem. – 2020. – V. 59, No. 14. – P. 9710-9717.

151. Пронин А.С., Смоленцев А.И., Миронов Ю.В. Особенности координации катионов [Ni(en)₂]²⁺ к кластерному аниону [{Re₄(µ₃-CCN)₄}(CN)₁₂]⁸⁻ // Коорд. химия. – 2021. – Т. 47, №. 8. – С. 516-520.

152. Yarovoy S.S., Smolentsev A.I., Kozlova S.G., Kompankov N.B., Gayfulin Y.M., Asanov I.P., Yanshole V.V., Mironov Y.V. From oxide to a new type of molecular tungsten compound: formation of bitetrahedral cluster complexes [$\{W_6(\mu_4-O)_2(\mu_3-CCN)_4\}(CN)_{16}\}^{10-}$ and [$\{W_6(\mu_4-O)_2(\mu_3-As)_4\}(CN)_{16}\}^{10-}$ // Chem. Commun. – 2018. – V. 54, No. 98. – P. 13837-13840.

153. Jach F., Bruckner S.I., Ovchinnikov A., Isaeva A., Bobnar M., Groh M.F., Brunner E., Hohn P., Ruck M. The Triply Deprotonated Acetonitrile Anion CCN³⁻ Stabilized in a Solid // Angew. Chem. Int. Ed. – 2017. – V. 56, No. 11. – P. 2919-2922.

154. Pei X.L., Yang Y., Lei Z., Wang Q.M. Geminal Tetraauration of Acetonitrile: Hemilabile-Phosphine-Stabilized Au₈Ag₄ Cluster Compounds // J. Am. Chem. Soc. – 2013. – V. 135, No. 17. – P. 6435-6437.

155. Liu Q.X., Li S.J., Zhao X.J., Zang Y., Song H.B., Guo J.H., Wang X.G. Tetranuclear N-Heterocyclic Carbene Mercury(II) Complexes Containing Triply Deprotonated Acetonitrile: Synthesis and Structural Studies // Eur. J. Inorg. Chem. – 2010. – V. 2010, No. 6. – P. 983-988. 156. Миронов Ю.В., Федоров В.Е. Четырехатомные кластерные халькогенидные комплексы рения с кубановым ядром. Синтез, строение и свойства // Изв. AH, Сер. хим. – 2002. – №. 4. – С. 529-539.

157. Laing M., Kiernan P.M., Griffith W.P. Tetrameric Cyano-Rhenium Complexes with Sulfur and Selenium Bridges - Preparation and X-Ray Crystal-Structures of $(Ph_4P)_4[Re_4S_4(CN)_{12}]\cdot 3H_2O$ and $(Ph_4P)_4[Re_4Se_4(CN)_{12}]\cdot 3H_2O$ // J. Chem. Soc. Chem. Comm. – 1977. – No. 7. – P. 221-222.

158. Pronin A.S., Smolentsev A.I., Kozlova S.G., Novozhilov I.N., Mironov Y.V. PO_2^{3-} and AsO³⁻: New Pnictogenide Ligands in the Highly Charged Re₄ Cluster Anions [$\{Re_4(PO)_3(PO_2)\}(CN)_{12}\}^{8-}$, [$\{Re_4As_2(AsO)_2\}(CN)_{12}\}^{8-}$ and [$\{Re_4(AsO)_4\}(CN)_{12}\}^{8-}$ // Inorg. Chem. – 2019. – V. 58, No. 11. – P. 7368-7373.

159. Пронин А.С., Брылев К.А., Ströbele М., Meyer Н.-Ј., Миронов Ю.В. Синтез и строение тетраэдрического кластерного комплекса рения с ядром {Re4(PO)4}⁴⁺ // Журн. структ. химии. – 2021. – Т. 62, №. 7. – С. 1157 – 1163.

160. Горбачук Е. В., Бадеева Е. К., Бабаев В. М., Ризванов И. Х., Зиннатуллин Р. Г., Павлов П. О., Хаяров Х. Р., Яхваров Д. Г. Реакционная способность фосфиноксида НЗРО при взаимодействии с кетонами // Изв. АН, Сер. хим. – 2016. – №. 5. – С. 1289-1294.

161. Viana R.B. Tailoring the electronic properties among oxoarsine, arsinoyl and arsine oxide isomers: the simplest molecular systems with an arsenic-oxygen bond // Rsc Adv. – 2016. – V.
6, No. 93. – P. 90760-90770.

162. Yamamoto J.H., Udachin K.A., Enright G.D., Carty A.J. Phosphorus monoxide as a quadruply bridging ligand: syntheses and x-ray crystal structures of $Ru_5(CO)_{15}(\mu_4-PF)$ and $[H_2NCy_2][Ru_5(CO)_{15}(\mu_4-PO)]$ // Chem. Commun. – 1998. – No. 20. – P. 2259-2260.

163. Shegani A., Triantis C., Nock B.A., Maina T., Kiritsis C., Psycharis V., Raptopoulou C., Pirmettis I., Tisato F., Papadopoulos M.S. Rhenium(I) Tricarbonyl Complexes with (2-Hydroxyphenyl)diphenylphosphine as PO Bidentate Ligand // Inorg. Chem. – 2017. – V. 56, No. 14. – P. 8175-8186.

164. Kuratieva N.V., Naumova M.I., Naumov D.Y., Podberezskaya N.V. Synthesis and crystal structure of two modifications of hexaaquamagnesium(II) hypophosphite // J. Struct. Chem. – 2004. – V. 45, No. 2. – P. 281-286.

165. Kuratieva N.V., Naumova M.I., Podberezskaya N.V., Naumov D.Y. The bivalent metal hypophosphites Sr(H₂PO₂)₂, Pb(H₂PO₂)₂ and Ba(H₂PO₂)₂ // Acta Crystallogr. C. – 2005. – V.
61. – P. I14-I16.

166. Xie J.L., Zhou Y.H., Li L.H., Zhang J.H., Song J.L. A new method for the preparation of a [Sn₂(H₂PO₂)₃]Br SHG-active polar crystal via surfactant-induced strategy // Dalton Trans. – 2017. – V. 46, No. 29. – P. 9339-9343.

167. Besnard C., Svensson C., Stahl K., Siegrist T. Re₄As₆S₃, a thio-spinel-related cluster system // J. Solid State Chem. – 2003. – V. 172, No. 2. – P. 446-450.

168. Пронин А.С., Смоленцев А.И., Миронов Ю.В. Влияние катиона на структуру тетраэдрических арсенидных цианокластеров рения // Изв. АН. Сер. хим. – 2020. – №. 11. – С. 2129-2134.

169. Pronin A.S., Gayfulin Y.M., Smolentsev A.I., Mironov Y.V. Tetrahedral Rhenium Cluster Complexes with Mixed-Ligand Cores $\{Re_4As_3Q\}^{5+}$ (Q = S, Se) and $\{Re_4As_2S_2\}^{6+}$ // J. Clust. Sci. – 2019. – V. 30, No. 5. – P. 1253-1257.

170. Пронин А.С., Смоленцев А.И., Миронов Ю.В. Синтез и строение тетраэдрического комплекса рения со смешаннолигандным кластерным ядром {Re₄As_{0.75}(AsO)_{2.25}Te}⁵⁺ // Журн. структ. химии. – 2020. – Т. 61, №. 1. – С. 100-105.

171. McComb K.A., Craw D., McQuillan A.J. ATR-IR spectroscopic study of antimonate adsorption to iron oxide // Langmuir. – 2007. – V. 23, No. 24. – P. 12125-12130.

172. Баличева Т.Г., Рой Н.И. Инфракрасные спектры и строение некоторых кристаллических гексагидроксиантимонатов и их дейтероаналогов // Журн. структ. химии. – 1971. – Т. 12, №. 3. – С. 415-422.

173. Pronin A.S., Smolentsev A.I., Mironov Y.V. Inorganic Ligands Sb³⁻ and Bi³⁻: Synthesis and Crystal Structures of Complexes with Mixed-Ligand Cluster Cores $\{Re_4Se_3Sb\}^{7+}$ and $\{Re_4Se_3Bi\}^{7+}$ // Inorg. Chem. – 2021. – V. 60, No. 7. – P. 4371-4374.

174. Lorenz I.P., Effinger G., Hiller W. Tris(Trimethylsilyl)Arsane as a Starting Compound for Triferrioarsonium and Tetraferrioarsonium Salts - Crystal-Structure of [(Cp(Co)₂Fe)₃AsOH]B(C₆H₅)₄ // Chem. Ber. – 1990. – V. 123, No. 2. – P. 251-255.

175. Emmerich C., Huttner G., Asam A. Bridged Diarsinidene Complexes $([Cp'Co_2Mn]_2As)_2E$ (E = O, S, Se) and Their Nucleophilic Splitting // J. Organomet. Chem. – 1993. – V. 447, No. 1. – P. 71-79.

176. Sokolov M.N., Virovets A.V., Dybtsev D.N., Chubarova E.V., Fedin V.P., Fenske D.
Phosphorous acid and arsenious acid as ligands // Inorg. Chem. – 2001. – V. 40, No. 19. – P.
4816-4817.

177. Hernandez-Molina R., Sokolov M.N., Clausen M., Clegg W. Synthesis and structure of nickel-containing cuboidal clusters derived from $[W_3Se_4(H_2O)_9]^{4+}$. Site-differentiated substitution at the nickel site in the series $[W_3NiQ_4(H_2O)_{10}]^{4+}$ (Q = S, Se) // Inorg. Chem. – 2006. – V. 45, No. 26. – P. 10567-10575.

178. Muller A., Jostes R., Eltzner W., Nie C.S., Diemann E., Bogge H., Zimmermann M., Dartmann M., Reinschvogell U., Che S., Cyvin S.J., Cyvin B.N. Synthetic, Spectroscopic, X-Ray Structural, and Quantum-Chemical Studies of Cyanothiomolybdates with Mo₂S, Mo₂S₂, Mo₃S₄, and Mo₄S₄ Cores - a Remarkable Class of Species Existing with Different Electron Populations and Having the Same Central Units as the Ferredoxins // Inorg. Chem. – 1985. – V. 24, No. 19. – P. 2872-2884.

179. Fedin V.P., Kalinina I.V., Samsonenko D.G., Mironov Y.V., Sokolov M.N., Tkachev S.V., Virovets A.V., Podberezskaya N.V., Elsegood M.R.J., Clegg W., Sykes A.G. Synthesis,

structure, and properties of molybdenum and tungsten cyano complexes with cuboidal $M_4(\mu_3 - E)_4$ (M = Mo, W; E = S, Se, Te) cores // Inorg. Chem. – 1999. – V. 38, No. 9. – P. 1956-1965. 180. McLean I.J., Hernandez-Molina R., Sokolov M.N., Seo M.S., Virovets A.V., Elsegood

M.R.J., Clegg W., Sykes A.G. Preparation, structure and properties of three $[Mo_xW_{4-x}S_4(H_2O)_{12}]^{5+}$ (x = 1-3) and $[MoW_3Se_4(H_2O)_{12}]^{5+}$ cuboidal complexes alongside $[Mo_4S_4(H_2O)_{12}]^{5+}$ and $[Mo_4Se_4(H_2O)_{12}]^{5+}$ // J. Chem. Soc. Dalton. – 1998. – No. 15. – P. 2557-2562.

181. Magliocchi C., Xie X.B., Hughbanks T. Cyanide-melt synthesis of reduced molybdenum selenide clusters // Inorg. Chem. – 2004. – V. 43, No. 6. – P. 1902-1911.

182. Christou G., Garner C.D., King T.J., Johnson C.E., Rush J.D. Isolation and Characterization by X-Ray Crystallography and Mossbauer Measurements of [NEt₄]₃[Fe₆W₂S₈(SPh)₆(OMe)₃], an Iron-Tungsten-Sulfur Cubic Cluster Dimer // J. Chem. Soc. Chem. Comm. – 1979. – No. 11. – P. 503-504.
БЛАГОДАРНОСТИ

Автор выражает искреннюю благодарность научному руководителю д.х.н. Миронову Юрию Владимировичу за помощь в постановке цели и задач при выполнении работы и обсуждении полученных результатов, за консультации по всем вопросам касательно проведенной работы. Автор благодарен Центру коллективного пользования ИНХ СО РАН за проведение экспериментов по характеризации полученных кластерных комплексов, коллегам из ИНХ СО РАН: к.х.н. Сухих Таисии Сергеевне за проведение рентгеноструктурного анализа, к.ф.-м.н. Лаврову Александру Николаевичу за проведение исследований магнитных свойств, к.х.н. Троицкой Ирине Баязитовне за проведение CHNS анализа, к.х.н. Цыганковой Альфие Рафаэльевне за проведение элементного анализа АЭС-ИСП, а также к.ф.-м.н. Яньшоле Вадиму Владимировичу (МТЦ СО РАН) за масс-спектрометрических исследований И к.х.н. Ельцову Илье проведение Владимировичу (НГУ) за запись и помощь в интерпретации ЯМР-спектров. Отдельная благодарность выражается к.х.н. Яровому Спартаку Сергеевичу и Гайфулину Якову Максумовичу за неоценимую помощь в обсуждении результатов и поддержку на всех этапах выполнения работы.

приложение

Основные кристаллографические параметры полученных соединений и детали рентгеноструктурных экспериментов

ТаблицаП1

Параметр	1	2	3
Эмпирическая формула	$C_{21}H_4K_9N_{17}O_2Re_4$	$C_{12}H_{32}N_{12}Na_8O_{21}P_4Re_4\\$	$C_{13}H_{40}N_{12}Na_8O_{23}P_4Re_4$
Молекулярная масса	1623,11	1733,10	1785,17
Температура, К	150(2)	150(2)	150(2)
Сингония	Ромбическая	Моноклинная	Моноклинная
Пр,гр,	Pnna	$P2_1/m$	$P2_1/n$
<i>a</i> , Å	15,6146(7)	11,7865(4)	26,826(3)
b, Å	15,6177(6)	17,3513(9)	11,498(1)
$c, \mathrm{\AA}$	15,7518(8)	11,9052(6)	29,141(3)
<i>α</i> , °	90	90	90
<i>β</i> , °	90	117,488(2)	97,879(2)
γ, °	90	90	90
$V, Å^3$	3841,3(3)	2159,88(17)	8903,2(16)
Ζ	4	2	8
$ ho_{\rm выч}, \Gamma/c M^3$	2,807	2,665	2,664
μ , mm ⁻¹	13,588	11,451	11,153
F(000)	2944	1608	6672
Размер кристалла	0,14 imes 0,10 imes 0,08	$0,\!23\times0,\!10\times0,\!05$	0,24 imes 0,11 imes 0,08
Диапазон θ, °	от 1,84 до 27,65	от 1,93 до 27,51,	от 1,93 до 25,35
	$-20 \le h \le 20,$	$-15 \le h \le 14$	$-32 \le h \le 32$
Диапазон индексов	$-20 \le k \le 20,$	$-15 \le k \le 22$	$-13 \le k \le 13$
	$-20 \le l \le 20$	$-15 \le l \le 15$	$-35 \le l \le 35$
Измеренных отражений	19186	10991 /	131261
Независимых отражений	19166 ($R_{int} = 0.0412$)	5123 ($R_{int} = 0,0427$)	$16300 (R_{int} = 0,1019)$
Наблюдаемых отражений	17530 [I > 2σ(I)]	4063 [I > $2\sigma(I)$]	14028 [I > 2σ(I)]
Значение S-фактора по F ²	1,049	1,127	1,034
Число уточняемых параметров	229	340	1379
$R_1 / wR_2(\mathbf{I} > 2\sigma(\mathbf{I}))$	0,0444 / 0,1170	0,0696 / 0,1451	0,0365 / 0,0901
R_1 / wR_1 (все данные)	0,0492 / 0,1195	0,0901 / 0,1515	0,0442 / 0,0950
$\Delta ho_{max} / \Delta ho_{min} \left(e \cdot \AA^{-3} ight)$	3,632 / -3,890	2,158 / -3,192	2,467 / -1,800

Параметр	4	5	6
Эмпирическая формула	$C_{12}H_{24}As_4K_8N_{12}O_{14}Re_4$	$C_{12}H_{41}As_4N_{12}Na_8O_{23}Re_4$	$C_{12}H_{24}As_4Cs_8N_{12}O_{14}Re_4$
Молекулярная масса	1917,71	1949,95	2574,38
Температура, К	150(2)	150(2)	150(2)
Сингония	Ромбическая	Моноклинная	Тетрагональная
Пр,гр,	Стст	C2/c	$P4_{2}/n$
<i>a</i> , Å	19,0004(7)	18,7654(6)	13,8823(15)
b, Å	14,4099(8)	14,1629(5)	13,8823(15)
<i>c</i> , Å	15,5959(9)	17,9388(6)	12,2405(15)
<i>α</i> , °	90	90	90
$eta, ^{\circ}$	90	103,597(1)	90
γ, °	90	90	90,
V, Å ³	4070,1(4)	4634,0(3)	2359,0(5)
Z	2	4	2
$ ho_{\rm выч}, \Gamma/cM^3$	2,665	2,795	3,624
μ , mm ⁻¹	11,486	13,410	18,485
F(000)	3504	3604	2256
Размер кристалла	0,14 imes 0,11 imes 0,05	$0,\!40 imes 0,\!08 imes 0,\!05$	$0,22 \times 0,16 \times 0,14$
Диапазон θ, °	от 2,14 до 27,25	от 2,75 до 27,53	от 2,07 до 28,27
	$-23 \le h \le 17$	$-23 \le h \le 24$	$-18 \le h \le 18$
Диапазон индексов	$-11 \le k \le 18$	$-18 \le k \le 10$	$-18 \le k \le 17$
	$-20 \le l \le 20$	$-21 \le l \le 23$	$-16 \le l \le 16$
Измеренных отражений	9930	12367	26227
Независимых отражений	2524 ($R_{int} = 0,0549$)	5331 ($R_{int} = 0,0263$)	2943 ($R_{int} = 0.0408$)
Наблюдаемых отражений	2188 [I > 2σ(I)]	4620 [I > $2\sigma(I)$]	2653 [I > 2σ(I)]
Значение S-фактора по F ²	1,062	1,093	1,038
Число уточняемых параметров	181	321	146
$R_1 / wR_2(\mathbf{I} > 2\sigma(\mathbf{I}))$	0,0280 / 0,0630	0,0416 / 0,0907	0,0291 / 0,0718
R_1 / wR_1 (все данные)	0,0360 / 0,0652	0,0502 / 0,0935	0,0332 / 0,0735
$\Delta ho_{max}/\Delta ho_{min} \left(e \cdot { m \AA}^{-3} ight)$	1,797 / -2,083	2,287 / -1,565	3,044 / -2,446

Параметр	7	8	9
Эмпирическая формула	$C_{12}H_{20}As_{3}K_{7}N_{12}O_{10}Re_{4}S$	$C_{12}H_{20}As_3K_7N_{12}O_{10}Re_4Se$	$C_{12}H_7As_2K_6N_{12}O_{3,50}Re_4S_2$
Молекулярная масса	1767,72	1814,62	1568,66
Температура, К	150(2)	150(2)	150(2)
Сингония	Ромбическая	Ромбическая	Моноклинная
Пр,гр,	Pnma	Pnma	$P2_{1}/n$
<i>a</i> , Å	11,7646(4)	11,7976(4)	10,9901(4)
b, Å	21,1737(7)	21,1316(8)	18,7623(8)
<i>c</i> , Å	15,7256(5)	15,6859(5)	16,3500(6)
α, °	90	90	90
β , °	90	90	90
γ, °	90	90	90
V, Å ³	3917,2(2)	3910,5(2)	3214,7(2)
Z	4	4	4
$ ho_{\text{выч}}, r/cm^3$	2,997	3,067	3,241
μ, мм ⁻¹	15,690	16,593	18,004
F(000)	3216	3268	2812
Размер кристалла	$0,50\times0,37\times0,04$	$0,\!20\times0,\!17\times0,\!02$	0,26 imes 0,22 imes 0,18
Диапазон θ, °	от 1,613 до 28,355	от 1,61 до 28,35	от 1,698 до 27,611
	$-15 \le h \le 10,$	$-15 \le h \le 15,$	$-14 \le h \le 9;$
Диапазон индексов	$-28 \leq k \leq 27,$	$-25 \le k \le 27,$	$-16 \le k \le 24;$
	$-20 \le l \le 20$	$-20 \le l \le 17$	$-21 \le l \le 21$
Измеренных отражений	26404	22153	19946
Независимых отражений	5015 ($R_{int} = 0,0532$)	$4645 (R_{int} = 0.0458)$	7400
Наблюдаемых отражений	4651 [I > 2σ(I)]	4353 [I > 2σ(I)]	6922
Значение S-фактора по F ²	1,086	1,244	1,107
Число уточняемых параметров	266	266	388
$R_I / wR_2(I > 2\sigma(I))$	0,0503 / 0,1090	0,0556 / 0,1361	0,0193 / 0,0418
R_1 / wR_1 (все данные)	0,0546 / 0,1107	0,0590 / 0,1372	0,0217 / 0,0425
$\Delta ho_{max}/\Delta ho_{min} (e \cdot {\rm \AA}^{-3})$	3,77 / -3,95	2,96 / -4,65	1,18 / -1,20

Параметр	10	11	12
Эмпирическая формула	C ₁₂ H ₁₈ As ₃ K ₇ N ₁₂ O _{11,25} Re ₄ Te	$C_{12}H_{18}K_5N_{12}O_{10}Re_4S_3Sb$	$C_{12}H_{10}K_5N_{12}O_6Re_4SbSe_3$
Молекулярная масса	1863,10	1648,61	1717,25
Температура, К	150(2)	150(2)	150(2)
Сингония	Триклинная	Моноклинная	Моноклинная
Пр,гр,	<i>P</i> –1	C2/c	<i>P2</i> ₁ /m
<i>a</i> , Å	11,6777(4)	39,0467(17)	10,3345(5)
b, Å	11,8627(3)	10,2055(4)	15,9205(7)
<i>c</i> , Å	16,5280(5)	19,2848(9)	10,8697(5)
<i>α</i> , °	95,3590(10)	90	90
eta,\circ	92,8170(10)	101,0210(10)	110,6860(10)
γ, °	117,9830(10)	90	90
V, Å ³	2001,80(10)	7543,1(6)	1673,10(13)
Ζ	2	8	2
$ ho_{\rm выч}, r/c m^3$	3,121	2,903	3,109
μ, мм ⁻¹	16,018	14,273	19,147
F(000)	1696	5984	1524
Размер кристалла	$0,22 \times 0,22 \times 0,08$	$0,\!25\times0,\!06\times0,\!05$	0,24 imes 0,08 imes 0,04
Диапазон θ, °	от 1,99 до 27,58	от 2,065 до 27,588	от 2,003 до 27,526
	$-15 \le h \le 15$	$-50 \le h \le 50$	$-13 \le h \le 11$
Диапазон индексов	$-10 \le k \le 15$	$-9 \le k \le 13$	$-20 \le k \le 19$
	$-21 \le l \le 21$	$-17 \le l \le 25$	$-14 \le l \le 14$
Измеренных отражений	20236	22198	9732
Независимых отражений	9205 ($R_{int} = 0.0286$)	$8706 (R_{int} = 0.0408)$	$3973 (R_{int} = 0.0248)$
Наблюдаемых отражений	7879 $[I > 2\sigma(I)]$	7573 [I > 2σ(I)]	$3500 [I > 2\sigma(I)]$
Значение S-фактора по F ²	1,050	1,147	1,035
Число уточняемых параметров	505	501	217
$R_1 / wR_2(\mathbf{I} > 2\sigma(\mathbf{I}))$	0,0317 / 0,0759	0,0476 / 0,1469	0,0374 / 0,0868
R_1 / wR_1 (все данные)	0,0403 / 0,0789	0,0551 / 0,1517	0,0417 / 0,0898
$\Delta \rho_{max} / \Delta \rho_{min} (e \cdot Å^{-3})$	2,754 / -1,824	2,952 / -3,960	4,046 / -2,092

Параметр	13	14	16
Эмпирическая формула	$C_{12}H_4K_5N_{12}O_2Re_4SbSe_3$	$C_{12}H_2Bi_{0,7}Cs_{4,7}N_{12}ORe_4Se_{3,3}$	$C_{12}H_{26}As_4K_8N_{12}O_{17}Re_4$
Молекулярная масса	1647,20	2106,59	1967,73
Температура, К	150(2)	150(2)	150(2)
Сингония	Моноклинная	Ромбическая	Моноклинная
Пр,гр,	$P2_{1}/n$	Fmm2	$P2_{1}/c$
<i>a</i> , Å	11,7574(7)	37,995(6)	13,6841(4)
<i>b</i> , Å	22,5483(15)	18,312(2)	17,9588(4)
<i>c</i> , Å	12,0000(7)	10,5498(12)	21,8926(5)
<i>α</i> , °	90	90	90
eta,\circ	109,521(2)	90	123,4610(10)
γ, °	90	90	90
V, Å ³	2998,4(3)	7340,2(16)	4488,4(2)
Z	4	8	4
$ ho_{\text{выч}}, r/cm^3$	3,649	3,813	2,912
μ , мм $^{-1}$	21,350	24,385	14,493
F(000)	2896	9430	3608
Размер кристалла	$0,36 \times 0,20 \times 0,02$	$0,14 \times 0,10 \times 0,02$	$0,24 \times 0,22 \times 0,15$
Диапазон θ, °	от 1,81 до 25,68	от 2,29 до 25,68	от 1,59 до 27,54
	$-12 \le h \le 14$	$-46 \le h \le 37$	$-16 \le h \le 17$
Диапазон индексов	$-27 \le k \le 27$	$-22 \le k \le 22$	$-19 \le k \le 23$
	$-14 \le l \le 12$	$-10 \le l \le 12$	$-28 \le l \le 27$
Измеренных отражений	17068	9430	29196
Независимых отражений	5537 ($R_{int} = 0,0303$)	$3500 (R_{int} = 0.0465)$	$10318 (R_{int} = 0.0231)$
Наблюдаемых отражений	4731 [I > $2\sigma(I)$]	3193 $[I > 2\sigma(I)]$	9568 [I > 2σ(I)]
Значение S-фактора по F ²	1,077	1,052	1,181
Число уточняемых параметров	352	214	514
$R_1 / wR_2(\mathbf{I} > 2\sigma(\mathbf{I}))$	0,0517 / 0,1579	0,0411 / 0,0987	0,0243 / 0,0539
R_I / wR_I (все данные)	0,0620 / 0,1654	0,0472 / 0,1012	0,0275 / 0,0547
$\Delta ho_{max}/\Delta ho_{min} (e \cdot Å^{-3})$	4,295 /4,423	2,901 / -1,726	2,620 / -1,016

Параметр	17	18	19
Эмпирическая формула	$C_{12}H_{52}As_4Cs_{10}I_2N_{12}O_{26}Re_4$	$C_{12}H_{11}As_4K_6N_{12}O_{6,5}Re_4$	$C_{12}H_{20}As_3Cs_4K_3N_{12}O_{13}Re_4S$
Молекулярная масса	3408,03	1706,41	2190,96
Температура, К	150(2)	150(2)	150(2)
Сингония	Кубическая	Моноклинная	Моноклинная
Пр,гр,	Fm-3m	$P2_{1}/m$	$P2_{1}/m$
<i>a</i> , Å	23,5998(9)	9,4020(3)	9,5905(8)
b, Å	23,5998(9)	18,4995(7)	19,0036(15)
<i>c</i> , Å	23,5998(9)	11,4384(5)	11,6868(10)
<i>α</i> , °	90	90	90
eta,\circ	90	110,888(1)	106,166(3)
γ, °	90	90	90
$V, Å^3$	13143,9(15)	1858,75(12)	2045,7(3)
Z	8	2	2
$ ho_{\rm выч}, r/cm^3$	3,444	3,049	3,557
μ, мм ⁻¹	15,812	17,234	18,132
F(000)	12032	1530	1944
Размер кристалла	$0{,}08\times0{,}08\times0{,}08$	$0{,}11\times0{,}04\times0{,}03$	$0,\!07\times0,\!06\times0,\!01$
Диапазон θ, °	от 1,495 до 33,323	от 2,201 до 27,583	от 1,814 до 25,697
	$-34 \le h \le 35$	$-7 \le h \le 12$	$-11 \le h \le 11$
Диапазон индексов	$-36 \le k \le 28$	$-18 \le k \le 24$	$-23 \le k \le 22$
	$-29 \le l \le 36$	$-14 \le l \le 14$	$-14 \le l \le 12$
Измеренных отражений	23783	11887	21596
Независимых отражений	1274 ($R_{int} = 0.0444$)	4358 ($R_{int} = 0.0457$)	$4000 (R_{int} = 0.0499)$
Наблюдаемых отражений	$1069 [I > 2\sigma(I)]$	3206 [I > $2\sigma(I)$]	3581 [I > $2\sigma(I)$]
Значение S-фактора по F ²	1,565	1,073	1,136
Число уточняемых параметров	52	247	256
$R_1 / wR_2(\mathbf{I} > 2\sigma(\mathbf{I}))$	0,0902 / 0,3237	0,0562 / 0,1586	0,0339 / 0,0899
R_1 / wR_1 (все данные)	0,1077 / 0,3419	0,0826 / 0,1706	0,0400 / 0,1025
$\Delta ho_{max} / \Delta ho_{min} (e \cdot Å^{-3})$	11,475 / -11,707	3,627 / -2,802	2,488 / -2,498

Параметр	20	21	22
Эмпирическая формула	$C_{12}H_{10}As_{3}K_{7}N_{12}O_{8}Re_{4}Se$	$C_{12}H_{11}As_3Cs_5K_2N_{12}O_{8,5}Re_4Te$	$C_{12}H_4Cs_4N_{12}O_4Re_4S_2$
Молекулярная масса	1772,54	2299,24	1720,83
Температура, К	150(2)	150(2)	150(2)
Сингония	Триклинная	Триклинная	Моноклинная
Пр,гр,	<i>P</i> –1	<i>P</i> –1	$P2_{1}/n$
<i>a</i> , Å	11,6472(8)	11,5459(6)	12,1262(10)
<i>b</i> , Å	11,7994(8)	11,7928(6)	20,8791(19)
<i>c</i> , Å	16,5402(11)	16,3329(8)	13,4516(12)
<i>α</i> , °	94,939(3)	97,557(2)	90
eta,\circ	93,481(3)	90,934(2)	111,052(3)
γ, °	118,240(2)	116,474(2)	90
V, Å ³	1981,7(2)	1966,32(18)	3178,4(5)
Z	2	2	4
$ ho_{\scriptscriptstyle B b I 4}, r/c m^3$	2,970	3,883	3,596
μ, мм ⁻¹	16,365	20,330	19,870
F(000)	1592	1998	2976
Размер кристалла	$0,\!12\times0,\!11\times0,\!05$	0,12 imes 0,11 imes 0,05	0,12 imes 0,07 imes 0,04
Диапазон θ, °	от 1,976 до 29,578	от 1,953 до 30,521	от 1,942 до 26,403
	$-16 \le h \le 15$	$-16 \le h \le 16$	$-15 \le h \le 15$
Диапазон индексов	$-16 \le k \le 16$	$-16 \le k \le 16$	$-26 \le k \le 24$
	$-22 \le l \le 22$	$-23 \le l \le 23$	$-16 \le l \le 16$
Измеренных отражений	42812	44143	33711
Независимых отражений	$11095 (R_{int} = 0.0823)$	$12002 (R_{int} = 0.0554)$	$6489 (R_{int} = 0.0462)$
Наблюдаемых отражений	7871 [I > $2\sigma(I)$]	$10852 [I > 2\sigma(I)]$	6125 [I > 2σ(I)]
Значение S-фактора по F ²	1,076	1,093	1,264
Число уточняемых параметров	478	439	365
$R_I / wR_2(\mathbf{I} > 2\sigma(\mathbf{I}))$	0,0626 / 0,1635	0,0464 / 0,1026	0,0514 / 0,1081
R_I / wR_I (все данные)	0,0961 / 0,1812	0,0519 / 0,1072	0,0547 / 0,1100
$\Delta ho_{max} / \Delta ho_{min} (e \cdot Å^{-3})$	2,450 / -3,493	8,055 / -4,546	5,171 / -2,227

Параметр	23	24	25
Эмпирическая формула	$C_9H_4Cs_{4.5}K_{0.5}N_9O_6Re_3S_2$	$C_{12}H_4Cs_4N_{12}O_3Re_4S_3$	$C_{12}H_4Cs_4N_{12}O_3Re_4Se_3$
Молекулярная масса	1574,58	1736,89	1877,59
Температура, К	150(2)	150(2)	150(2)
Сингония	Ромбическая	Моноклинная	Моноклинная
Пр,гр,	Fmm2	$P2_{1}/n$	$P2_{1}/n$
<i>a</i> , Å	18,0326	12,2036(7)	12,2576(3)
b, Å	31,4548(17)	20,9092(11)	20,8210(5)
<i>c</i> , Å	10,7816(6)	13,5243(8)	13,4942(3)
a, °	90	90	90
eta,\circ	90	110,883(2)	110,5870(10)
γ, °	90	90	90
V, Å ³	6115,5(6)	3224,3(3)	3224,00(13)
Ζ	8	4	4
$ ho_{\rm выч}, r/cm^3$	3,420	3,578	3,868
μ , mm ⁻¹	17,369	19,650	22,844
F(000)	5464	3008	3224
Размер кристалла	$0,\!11\times0,\!10\times0,\!03$	$0,11 \times 0,06 \times 0,03$	$0,\!10\times0,\!09\times0,\!04$
Диапазон θ, °	от 2,259 до 30,515	от 1,883 до 29,735	от 1,886 до 30,555
	$-25 \le h \le 25$	$-16 \le h \le 16$	$-17 \le h \le 17$
Диапазон индексов	$-44 \le k \le 44$	$-28 \le k \le 29$	$-29 \le k \le 29$
	$-14 \le l \le 15$	$-18 \le l \le 18$	$-19 \le l \le 18$
Измеренных отражений	27757	49099	62989
Независимых отражений	4799 ($R_{int} = 0,0552$)	9098 ($R_{int} = 0,0575$)	9870 ($R_{int} = 0,0341$)
Наблюдаемых отражений	4542 [I > $2\sigma(I)$]	7721 [I > $2\sigma(I)$]	9253 [I > 2σ(I)]
Значение S-фактора по F ²	1,114	1,210	1,320
Число уточняемых параметров	176	367	367
$R_{I} / wR_{2}(I > 2\sigma(I))$	0,0544 / 0,1177	0,0514 / 0,1315	0,0463 / 0,0976
R_1 / wR_1 (все данные)	0,0571 / 0,1189	0,0623 / 0,1208	0,0499 / 0,0987
$\Delta ho_{max} / \Delta ho_{min} (e \cdot Å^{-3})$	3,998 / -5,518	2,845 / -2,228	2,763 / -2,925

Параметр	26	27	28			
Эмпирическая						
формула	$C_{14}H_{10}Cs_2K_4Mo_2N_{12}O_4Re_2S_4$	$-14H_{10}Cs_2K_4MO_2N_{12}O_4Ke_2S_4C_{12}H_{20}K_6MO_2N_{12}O_{10}Ke_2Se_4C_{12}H_{24}Cs_7MO_{3,02}N_{12}O_{12}Ke_0$				
Молекулярная масса	1525,98	1607,08	2058,98			
Температура, К	150(2)	150(2)	150(2)			
Сингония	Моноклинная	Тригональная	Ромбическая			
Пр,гр,	$P2_{1}/n$	P3	Pbcn			
<i>a</i> , Å	10,1541(2)	33,127(3)	15,9800(3)			
b, Å	18,4232(5)	33,127(3)	17,3389(3)			
<i>c</i> , Å	19,1245(5)	9,3387(7)	16,4822(3)			
α , °	90	90	90			
$eta, ^{\circ}$	91,5610(10)	90	90			
γ, °	90	120	90			
V, Å ³	3576,31(15)	8875,5(17)	4566,82(14)			
Ζ	4	9	4			
$ ho_{\rm выч}, \Gamma/cm^3$	2,834	2,674	2,994			
μ , mm ⁻¹	10,211	11,151	9,130			
F(000)	2777	6484	3608			
Размер кристалла	$0,12 \times 0,08 \times 0,06$	0,25 imes 0,08 imes 0,05	0,10 imes 0,04 imes 0,04			
Диапазон Ө, °	от 2,131 до 30,506	от 1,420 до 24,406	от 2,129 до 30,508			
	$-14 \le h \le 14$	$-38 \le h \le 32$	$-21 \le h \le 22$			
Диапазон индексов	$-26 \le k \le 22$	$-35 \le k \le 25$	$-24 \le k \le 24$			
	$-27 \le l \le 27$	$-10 \le l \le 8$	$-23 \le l \le 23$			
Измеренных отражений	54125	34885	126691			
Независимых отражений	10862 ($R_{int} = 0.0531$)	15373 ($R_{int} = 0,0641$)	6968 ($R_{int} = 0,0331$)			
Наблюдаемых отражений	9249 [I > 2σ(I)]	12387 [I > $2\sigma(I)$]	6453 [I > 2σ(I)]			
Значение S-фактора по F ²	1,158	1,022	1,065			
Число уточняемых параметров	413	546	238			
$R_1 / wR_2(\mathbf{I} > 2\sigma(\mathbf{I}))$	0,0364 / 0,0634	0,0518 / 0,0957	0,0318 / 0,0960			
R_1 / wR_1 (все данные)	0,0472 / 0,0701	0,0732 / 0,1051	0,0342 / 0,0984			
$\Delta ho_{max}/\Delta ho_{min}~(e\cdot {\rm \AA}^{-3})$	1,691 / -1,370	2,345 / -1,144	3,957 / -2,959			

ТаблицаП10

	1	r	r
Параметр	29	30	31
Эмпирическая	C14H24K7M0200N12O10Re101Se4	C12H0C85KN12O2Re2W2S4	C12H10C5521K170N12O5ReW2S4
формула	014112412/10102,791 (12 0 101001,01004		- 121110-05,211 x 1,791 (120)100 (1)04
Молекулярная масса	1584,88	1952,28	2030,45
Температура, К	150(2)	150(2)	150(2)
Сингония	Ромбическая	Моноклинная	Моноклинная
Пр,гр,	Pnma	$P2_{1}/c$	$P2_{1}/n$
<i>a</i> , Å	11,8651(2)	18,1383(3)	18,4763(6)
$b, \mathrm{\AA}$	21,2079(4)	10,2177(2)	10,3305(4)
<i>c</i> , Å	15,7889(3)	19,2661(4)	21,7810(8)
α, °	90	90	90
β , °	90	94,6750(10)	108,1590(10)
γ, °	90	120	90
<i>V</i> , Å ³	3973,02(13)	3558,74(12)	3950,3(2)
Z	4	4	4
$\rho_{\rm выч}, \Gamma/cm^3$	2,650	3,6433	3,397
μ , mm ⁻¹	8,446	18,654	16,931
F(000)	2897	3368	3510
Размер кристалла	$0,\!10 imes 0,\!08 imes 0,\!05$	$0,\!15\times0,\!10\times0,\!10$	$0,\!12\times0,\!10\times0,\!04$
Диапазон Ө, °	от 2,352 до 30,512	от 2,121 до 28,699	от 2,203 до 29,575
	$-16 \le h \le 14$	$-24 \le h \le 24$	$-25 \le h \le 24$
Диапазон индексов	$-30 \le k \le 30$	$-11 \le k \le 13$	$-14 \le k \le 14$
	$-20 \le l \le 22$	$-26 \le l \le 24$	$-30 \le l \le 29$
Измеренных отражений	54820	40434	33340
Независимых отражений	$6215 (R_{int} = 0.0549)$	9176 ($R_{int} = 0.0482$)	$10750 (R_{int} = 0.0585)$
Наблюдаемых отражений	5543 [I > 2σ(I)]	8590 [I > 2σ(I)]	8709 [I > 2σ(I)]
Значение S-фактора по F ²	1,181	1,071	1,045
Число уточняемых параметров	254	363	421
$R_1 / wR_2(\mathbf{I} > 2\sigma(\mathbf{I}))$	0,0420 / 0,0863	0,0342 / 0,0762	0,0421 / 0,0556
R_1 / wR_1 (все данные)	0,0478 / 0,0883	0,0371 / 0,0768	0,0556 / 0,1026
$\Delta ho_{max} / \Delta ho_{min} \left(e \cdot {\rm \AA}^{-3} ight)$	1,524 / -1,333	3,677 / -5,126	2,985 / -1,661

Параметр	32	33	34
Эмпирическая формула	$C_{12}H_{20}K_6N_{12}O_{10}Re_2Se_4W_2$	$C_{13}H_{16,48}Cs_6N_{12}O_{6,24}ReSe_4W_3$	$C_{18}H_{12}K_8MoN_{18}O_6Re_6Se_8$
Молекулярная масса	1782,90	2291,66	2734,08
Температура, К	150(2)	150(2)	150(2)
Сингония	Тригональная	Моноклинная	Триклинная
Пр,гр,	P3	$P2_{1}/n$	<i>P</i> –1
<i>a</i> , Å	33,1303(10)	18,6439(3)	10,6356(3)
$b, \mathrm{\AA}$	33,1303(10)	10,4129(2)	11,8379(3)
<i>c</i> , Å	9,3359(5)	22,0131(4)	12,6438(3)
α , °	90	90	67,8540(10)
eta,\circ	90	108,4950(10)	63,8330(10)
γ, °	120	120	90
V, Å ³	8874,4(7)	4052,83(13)	1317,71(6)
Ζ	9	4	1
$ ho_{\rm выч}, \Gamma/cM^3$	3,002	3,733	3,445
μ , mm ⁻¹	16,313	20,407	20,159
F(000)	7057	3911	1210
Размер кристалла	$0,\!15\times0,\!04\times0,\!04$	0,30 imes 0,08 imes 0,08	$0,15 \times 0,15 \times 0,05$
Диапазон $\theta_{,}^{\circ}$	от 1,229 до 25,690	от 1,729 до 28,696	от 1,746 до 30,531
	$-38 \le h \le 40$	$-21 \le h \le 25$	$-15 \le h \le 15$
Диапазон индексов	$-40 \le k \le 40$	$-14 \le k \le 14$	$-16 \le k \le 16$
	$-11 \le l \le 11$	$-29 \le l \le 29$	$-18 \le l \le 18$
Измеренных отражений	159689	64300	24549
Независимых отражений	22473 ($R_{int} = 0,0705$)	$10457 (R_{int} = 0.0568)$	7973 ($R_{int} = 0,0472$)
Наблюдаемых отражений	21355 [I > $2\sigma(I)$]	$10088 [I > 2\sigma(I)]$	6765 [I > 2σ(I)]
Значение S-фактора по F ²	1,106	1,148	1,030
Число уточняемых	1290	156	222
параметров	1209	430	552
$R_1 / wR_2(\mathbf{I} > 2\sigma(\mathbf{I}))$	0,0329 / 0,0649	0,0314 / 0,0752	0,0410 / 0,1029
R_I / wR_I (все данные)	0,0359/ 0,0661	0,0326 / 0,0758	0,0508 / 0,1094
$\Delta ho_{max} / \Delta ho_{min} \left(e \cdot {\rm \AA}^{-3} ight)$	2,600 / -1,727	1,945 / -2,831	4,364 / -3,094

Параметр	35	36	37
Эмпирическая формула	$C_{19}H_{18}K_8N_{18}O_8Re_6Se_8W$	$C_{18}H_8Cs_7N_{18}O_4Re_7S_8$	$C_{18}H_{22}K_7N_{18}O_{11}Re_7Se_8$
Молекулярная масса	2872,03	3030,67	2875,31
Температура, К	150(2)	150(2)	150(2)
Сингония	Триклинная	Тригональная	Триклинная
Пр,гр,	<i>P</i> –1	R-3m	<i>P</i> –1
<i>a</i> , Å	11,9191(3)	18,9117(2)	11,8798(4)
b, Å	12,3042(4)	18,9117(2)	12,1470(5)
<i>c</i> , Å	12,6793(4)	31,6449(6)	12,7321(5)
$lpha, \circ$	104,2010(10)	90	103,7450(10)
eta, \circ	112,7240(10)	90	112,7290(10)
γ, °	104,3470(10)	120	103,7510(10)
V, Å ³	1535,88(8)	9801,6(3)	1530,71(10)
Ζ	1	6	1
$ ho_{\rm выч}, г/cm^3$	3,105	3,081	3,119
μ , mm ⁻¹	18,967	17,049	19,067
F(000)	1252	7872	1274
Размер кристалла	0,15 imes 0,08 imes 0,08	$0,26 \times 0,21 \times 0,09$	$0,\!14\times0,\!14\times0,\!07$
Диапазон θ, °	от 2,685 до 35,670	от 1,790 до 33,162	от 1,865 до 28,732
	$-15 \le h \le 19$	$-28 \le h \le 29$	$-16 \le h \le 16$
Диапазон индексов	$-18 \le k \le 18$	$-24 \le k \le 29$	$-16 \le k \le 16$
	$-19 \le l \le 15$	$-48 \le l \le 48$	$-17 \le l \le 17$
Измеренных отражений	31944	55410	37983
Независимых отражений	$12051 (R_{int} = 0.0465)$	4481 ($R_{int} = 0,0683$)	7878 ($R_{int} = 0,0380$)
Наблюдаемых отражений	9783 [I > 2σ(I)]	$4060 [I > 2\sigma(I)]$	6682 [I > $2\sigma(I)$]
Значение S-фактора по F ²	1,020	1,080	1,106
Число уточняемых параметров	341	136	340
$R_{I} / wR_{2}(I > 2\sigma(I))$	0,0504 / 0,1120	0,0371 / 0,1156	0,0646 / 0,1728
R_1 / wR_1 (все данные)	0,0639 / 0,1197	0,0413 / 0,1188	0,0781 / 0,1836
$\Delta ho_{max} / \Delta ho_{min} \left(e \cdot \dot{A}^{-3} \right)$	5,627 / -6,077	8,679 / -2,758	4,158 / -6,094

Параметр	38	39
Эмпирическая формула	$C_{18}H_{38}K_8N_{18}O_{22}Re_8Se_8$	$C_{27}H_{28}IK_{10}N_{27}O_{14}Re_{12}S_{14}$
Молекулярная масса	3292,74	4155,90
Температура, К	150(2)	150(2)
Сингония	Триклинная	Моноклинная
Пр,гр,	<i>P</i> –1	C2/c
<i>a</i> , Å	11,9540(7)	30,1441(12)
b, Å	14,2488(7)	28,9506(10)
<i>c</i> , Å	19,6771(11)	24,4841(8)
α , °	74,018(2)	90
eta,\circ	78,104(2)	123,4750(10)
γ, °	75,051(2)	120
V, Å ³	3079,9(3)	17822,8(11)
Ζ	2	8
$ ho_{\rm выч}, \Gamma/cM^3$	3,551	3,098
μ , mm ⁻¹	20,999	17,424
F(000)	2944	14864
Размер кристалла	$0,\!09\times0,\!08\times0,\!06$	$0,\!13\times0,\!07\times0,\!04$
Диапазон θ, °	от 1,522 до 29,574	от 1,407 до 25,703
	$-16 \le h \le 16$	$-36 \le h \le 36$
Диапазон индексов	$-18 \le k \le 19$	$-35 \le k \le 35$
	$-27 \le l \le 27$	$-28 \le l \le 29$
Измеренных отражений	63769	99254
Независимых отражений	$17174 (R_{int} = 0.0557)$	$16954 (R_{int} = 0.0523)$
Наблюдаемых отражений	$13702 [I > 2\sigma(I)]$	14578 [I > 2σ(I)]
Значение S-фактора по F ²	1,024	1,106
Число уточняемых параметров	754	992
$R_{I} / wR_{2}(I > 2\sigma(I))$	0,0369 / 0,0743	0,0398 / 0,1183
R_{I} / wR_{I} (все данные)	0,0545 / 0,0810	0,0497 / 0,1287
$\Delta ho_{max} / \Delta ho_{min} \ (e \cdot { m \AA}^{-3})$	4,709 / -3,682	6,099 /6,051

Порошковые дифрактограммы для полученных соединений

Рис. П1. Экспериментальная порошковая дифрактограмма соединения K₄[{Re₄S₄}(CN)₁₂]·H₂O (черная линия) в сравнении с рассчитанной по структуре монокристалла (красная линия).

Рис. П2. Экспериментальная порошковая дифрактограмма соединения K₄[{Re₄Se₄}(CN)₁₂]·H₂O (черная линия) в сравнении с рассчитанной по структуре монокристалла (красная линия).

Рис. ПЗ. Экспериментальная порошковая дифрактограмма соединения K₄[{Re₄Te₄}(CN)₁₂]·5H₂O (черная линия) в сравнении с рассчитанной по структуре монокристалла (красная линия).

Рис. П4. Экспериментальная порошковая дифрактограмма соединения К₈[{Re₄(µ₃-CCN)₄}(CN)₁₂]·5H₂O·KCN (черная линия) в сравнении с рассчитанной по структуре монокристалла (красная линия).

Рис. П5. Экспериментальная порошковая дифрактограмма соединения Na₈[{Re₄(PO)₃(PO₂)}(CN)₁₂]·15H₂O (черная линия) в сравнении с рассчитанной по структуре монокристалла (красная линия).

Рис. Пб. Экспериментальная порошковая дифрактограмма соединения Na₈[{Re₄(PO)₄}(CN)₁₂]·18H₂O·MeOH (черная линия) в сравнении с рассчитанной по структуре монокристалла (красная линия).

Рис. П7. Экспериментальная порошковая дифрактограмма соединения K₈[{Re₄As₂(AsO)₂}(CN)₁₂]·12H₂O (черная линия) в сравнении с рассчитанной по структуре монокристалла (красная линия).

Рис. П8. Экспериментальная порошковая дифрактограмма соединения K₇[{Re₄As₃S}(CN)₁₂]·10H₂O (черная линия) в сравнении с рассчитанной по структуре монокристалла (красная линия).

Рис. П9. Экспериментальная порошковая дифрактограмма соединения K₇[{Re₄As₃Se}(CN)₁₂]·9,5H₂O (черная линия) в сравнении с рассчитанной по структуре монокристалла (красная линия).

Рис. П10. Экспериментальная порошковая дифрактограмма соединения K₆[{Re₄As₂S₂}(CN)₁₂]·3,5H₂O (черная линия) в сравнении с рассчитанной по структуре монокристалла (красная линия).

Рис. П11. Экспериментальная порошковая дифрактограмма соединения K₇[{Re₄(AsO)_{2,25}As_{0,75}Te}(CN)₁₂]·9H₂O (черная линия) в сравнении с рассчитанной по структуре монокристалла (красная линия).

Рис. П12. Экспериментальная порошковая дифрактограмма соединения K₅[{Re₄S₃(SbO(H₂O)₂)}(CN)₁₂]·7H₂O (черная линия) в сравнении с рассчитанной по структуре монокристалла (красная линия).

Рис. П13. Экспериментальная порошковая дифрактограмма соединения K₅[{Re₄Se₃(SbO(H₂O)₂)}(CN)₁₂]·3H₂O (черная линия) в сравнении с рассчитанной по структуре монокристалла (красная линия).

Рис. П14. Экспериментальная порошковая дифрактограмма соединения K₅[{Re₄Se₃Sb}(CN)₁₂]·2H₂O (черная линия) в сравнении с рассчитанной по структуре монокристалла (красная линия).

Рис. П15. Экспериментальная порошковая дифрактограмма соединения Cs_{4,7}[{Re₄Se_{3,3}Bi_{0,7}}(CN)₁₂]·H₂O (черная линия) в сравнении с рассчитанной по структуре монокристалла (красная линия).

Рис. П16. Экспериментальная порошковая дифрактограмма соединения K₈[{Re₄(AsO)₄}(CN)₁₂]·13H₂O (черная линия) в сравнении с рассчитанной по структуре монокристалла (красная линия).

Рис. П17. Экспериментальная порошковая дифрактограмма соединения K₃Cs₄[{Re₄(AsO)₃S}(CN)₁₂]·10H₂O (черная линия) в сравнении с рассчитанной по структуре монокристалла (красная линия).

Рис. П18. Экспериментальная порошковая дифрактограмма соединения K₇[{Re₄(AsO)₃Se}(CN)₁₂]·5H₂O (черная линия) в сравнении с рассчитанной по структуре монокристалла (красная линия).

Рис. П19. Экспериментальная порошковая дифрактограмма соединения K₇[{Re₄(AsO)₃Te}(CN)₁₂]·5,5H₂O (черная линия) в сравнении с рассчитанной по структуре монокристалла (красная линия).

Рис. П20. Экспериментальная порошковая дифрактограмма соединения Cs_{4,5}K_{0,5}[{Re₃(µ₃-S)(µ-O)₂(µ-SO₂)}(CN)₉]·2H₂O (черная линия) в сравнении с рассчитанной по структуре монокристалла (красная линия).

Рис. П21. Экспериментальная порошковая дифрактограмма соединения Cs₄[{Re₄S₃O}(CN)₁₂]·2H₂O (черная линия) в сравнении с рассчитанной по структуре монокристалла (красная линия).

Рис. П22. Экспериментальная порошковая дифрактограмма соединения Cs₄[{Re₄Se₃O}(CN)₁₂]·2H₂O (черная линия) в сравнении с рассчитанной по структуре монокристалла (красная линия).

Рис. П23. Экспериментальная порошковая дифрактограмма соединения Cs₂K₄[{Mo₂Re₂S₄}(CN)₁₂]·2H₂O·2MeOH (черная линия) в сравнении с рассчитанной по структуре монокристалла (красная линия).

Рис. П24. Экспериментальная порошковая дифрактограмма соединения K₆[{Mo₂Re₂Se₄}(CN)₁₂]·10H₂O (черная линия) в сравнении с рассчитанной по структуре монокристалла (красная линия).

Рис. П25. Экспериментальная порошковая дифрактограмма соединения Cs₇[{Mo₃ReS₄}(CN)₁₂]·12H₂O (черная линия) в сравнении с рассчитанной по структуре монокристалла (красная линия).

Рис. П26. Экспериментальная порошковая дифрактограмма соединения K₇[{Mo₃ReSe₄}(CN)₁₂]·8H₂O·2MeOH (черная линия) в сравнении с рассчитанной по структуре монокристалла (красная линия).

Рис. П27. Экспериментальная порошковая дифрактограмма соединения K₆[{Re₂W₂Se₄}(CN)₁₂]·10H₂O (черная линия) в сравнении с рассчитанной по структуре монокристалла (красная линия).

Рис. П28. Экспериментальная порошковая дифрактограмма соединения Cs₆[{ReW₃Se₄}(CN)₁₂]·5,2H₂O·MeOH (черная линия) в сравнении с рассчитанной по структуре монокристалла (красная линия).

Рис. П29. Экспериментальная порошковая дифрактограмма соединения K₈[{Re₃Se₄(CN)₉}{Re₃MoSe₄}(CN)₉]·6H₂O (черная линия) в сравнении с рассчитанной по структуре монокристалла (красная линия).

Рис. П30. Экспериментальная порошковая дифрактограмма соединения K₈[{Re₃Se₄(CN)₉}{Re₃WSe₄}(CN)₉]·7H₂O·MeOH (черная линия) в сравнении с рассчитанной по структуре монокристалла (красная линия).

Рис. П31. Экспериментальная порошковая дифрактограмма соединения Cs₇[{Re₃S₄(CN)₉}{Re₄S₄}(CN)₉]·4H₂O (черная линия) в сравнении с рассчитанной по структуре монокристалла (красная линия).

Рис. П32. Экспериментальная порошковая дифрактограмма соединения К₇[{Re₃Se₄(CN)₉}{Re₄Se₄}(CN)₉]·11H₂O (черная линия) в сравнении с рассчитанной по структуре монокристалла (красная линия).

Рис. П33. Экспериментальная порошковая дифрактограмма соединения K₈[{Re₈Se₈(µ-O)₃}(CN)₁₈]·19H₂O (черная линия) в сравнении с рассчитанной по структуре монокристалла (красная линия).

Рис. ПЗ4. Фрагмент масс-спектра отрицательных ионов соли Cs₂K₄[{Mo₂Re₂S₄}(CN)₁₂] в водном растворе.

Рис. П35. Фрагмент масс-спектра отрицательных ионов соли K₆[{Mo₂Re₂Se₄}(CN)₁₂]в водном растворе.

Рис. ПЗб. Фрагмент масс-спектра отрицательных ионов соли $Cs_7[{Mo_3ReS_4}(CN)_{12}]$ в водном растворе.

Рис. П37. Фрагмент масс-спектра отрицательных ионов соли K₇[{Mo₃ReSe₄}(CN)₁₂] в водном растворе.

Рис. ПЗ8. Фрагмент масс-спектра отрицательных ионов соли $K_6[{Re_2W_2Se_4}(CN)_{12}]$ в водном растворе.

Рис. ПЗ9. Фрагмент масс-спектра отрицательных ионов соли Cs₆[{ReW₃Se₄}(CN)₁₂] в водном растворе.

Рис. П40. Фрагмент масс-спектра отрицательных ионов соли K₈[{Re₃Se₄(CN)₉} {Re₃MoSe₄}(CN)₉] в водном растворе.

Рис. П41. Фрагмент масс-спектра отрицательных ионов соли K₈[{Re₃Se₄(CN)₉} {Re₃WSe₄}(CN)₉] в водном растворе.

Рис. П42. Фрагмент масс-спектра отрицательных ионов соли Cs₇[{Re₃S₄(CN)₉} {Re₄S₄}(CN)₉] в водном растворе.

Рис. П43. Фрагмент масс-спектра отрицательных ионов соли K₇[{Re₃Se₄(CN)₉} {Re₄Se₄}(CN)₉] в водном растворе.

Магнитные свойства семиядерных комплексов

Рис. П44. (слева) Температурная зависимость магнитной восприимчивости χ для комплекса K₈[{Re₃Se₄(CN)₉}{Re₃MoSe₄}(CN)₉]·6H₂O, измеренная в магнитном поле H=1 кЭ (о) и 10 кЭ (о). (справа) Эффективный магнитный момент, рассчитанный в приближении невзаимодействующих моментов

Рис. П45. (слева) Температурная зависимость магнитной восприимчивости χ для комплекса K₈[{Re₃Se₄(CN)₉} {Re₃WSe₄}(CN)₉]·7H₂O·MeOH, измеренная в магнитном поле H=1 кЭ (о) и 10 кЭ (•). (справа) Эффективный магнитный момент, рассчитанный в приближении невзаимодействующих моментов (θ = 0).

Рис. П46. (слева) Температурная зависимость магнитной восприимчивости χ для комплекса Cs₇[{Re₃S₄(CN)₉} {Re₄S₄}(CN)₉]·4H₂O, измеренная в магнитном поле H=1 кЭ (о) и 10 кЭ (•). (справа) Эффективный магнитный момент, рассчитанный в приближении невзаимодействующих моментов ($\theta = 0$).

Разное

Рис. П47. Короткий контакт между анионами [{Re₄Se_{3,3}Bi_{0,7}}(CN)₁₂]^{4,7-}

Рис. П48. ИК-спектры комплексов [${Re_4(AsO)_3S}(CN)_{12}$]⁷⁻ и [${Re_4(AsO)_3Se}(CN)_{12}$]⁷⁻