

Оборудование Центра коллективного пользования ФГБУН Института неорганической химии им. А.В. Николаева Сибирского отделения РАН 630090, г. Новосибирск, пр. Лаврентьева, 3

Руководитель ЦКП ИНХ СО РАН д.т.н. Сапрыкин Анатолий Ильич saprykin@niic.nsc.ru

ПОЛОЖЕНИЕ

о Центре коллективного пользования ИНХ СО РАН (ЦКП ИНХ СО РАН)

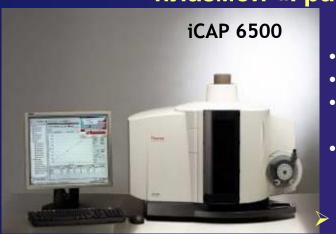
Целями организации и деятельности ЦКП ИНХ СО РАН являются:

- > коллективное использование дорогостоящих приборов и установок научными подразделениями ИНХ СО РАН для выполнения фундаментальных и прикладных задач в области исследования химического состава, структуры и функциональных свойств веществ и материалов;
- развитие инструментальной и методической базы, подготовка кадров для проведения измерений, эксплуатации и обслуживания приборов;
- **робеспечение единства и достоверности измерений при проведении исследований химического состава и структуры**;
- > содействие выполнению научных и научно-прикладных проектов, и экспериментальная поддержка аналитических работ подразделений ИНХ СО РАН и Новосибирского государственного университета;
- > ознакомление студентов и аспирантов с аналитическими возможностями методов и приборов ЦКП для решения актуальных задач при выполнении квалификационных работ.

Комплекс методов количественного химического анализа

- 1. Атомно-эмиссионные спектральные (до 40 элементов):
- дуга постоянного тока (C_{min} =10⁻⁴ 10⁻⁵ %)
- индуктивно связанная плазма (ИСП) (C_{min} =10⁻⁵ 10⁻⁷ %)
- ИСП + искровая абляция (ИА) (C_{min} =10⁻¹ 10⁻⁴ %)
- ИСП + электротермическое испарение (ЭТИ) (C_{min} =10⁻⁵ 10⁻⁹ %)
- двухструйный дуговой плазмотрон (C_{min} =10⁻⁴ 10⁻⁶ %)
- микроволновая плазма (C_{min} =10⁻¹ 10⁻⁵ %)
- 2. Масс-спектрометрические (до 60 элементов):
- масс-спектрометрия с ИСП

 $(C_{min}=10^{-1}-10^{-7}\%)$


- 3. Атомно-абсорбционные спектральные (одноэлементные):
- пламенная атомизация (C_{min} =10⁰ 10⁻⁴ %)
- электротермическая атомизация (C_{min} =10⁻⁵ 10⁻⁷ %)
- двухстадийная зондовая электротермическая атомизация для БМ
- 4. CHN-S анализ.
- 5. Капиллярный электрофорез (определение химических форм, анионов и галогенов).
- 6. Инверсионная вольтамперометрия (определение металлов в объектах окружающей среды и биологических материалах).

АНАЛИТИЧЕСКАЯ ЛАБОРАТОРИЯ №416 зав. Лабораторией к.х.н. Медведев Н.С.

Атомно-эмиссионная спектрометрия с ИСП

1. Атомно-эмиссионный спектрометр с индуктивно связанной плазмой «Гранд ИСП» (ВМК Оптоэлектроника)

Характеристики ИСП:

- частота 27,12 МГц;
- мощность 1 1,5 кВт;
- концентрация электронов 10¹⁴ 10¹⁶ см³;
- электронная температура 6000 8000 К

 Пробы – разбавленные (1- 2М) кислотные растворы с содержанием основного компонента ~1 %

- Способ возбуждения введение аэрозоля пробы в ИСП (скорость подачи раствора 0,1-1 мл/мин)
- Градуировка по стандартным растворам аналитов.

Пределы обнаружения аналитов

0.455 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0.005					
0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0.05 0.005 0	o units				
0.35 0.35 0.25 0.15 0.1 0.05 0.002 0.06 0.1 0.12 0.16 0.2 0.22 0.26 0.3 0.32					
0.3 0.25 0.2 0.15 0.1 0.05 0 0.02 0.06 0.1 0.12 0.16 0.2 0.22 0.26 0.3 0.32					
0.25 0.2 0.15 0.1 0.05 0 0.02 0.06 0.1 0.12 0.16 0.2 0.22 0.26 0.3 0.32					
0.15 0.1 0.05 0 0.02 0.06 0.1 0.12 0.16 0.2 0.22 0.26 0.3 0.32					
0.15 0.1 0.05 0 0.02 0.06 0.1 0.12 0.16 0.2 0.22 0.26 0.3 0.32					
0.1 0.05 0 0.02 0.06 0.1 0.12 0.16 0.2 0.22 0.26 0.3 0.32	0.2				
0.05					
0 0.02 0.06 0.1 0.12 0.16 0.2 0.22 0.26 0.3 0.32	00				
0 0.02 0.06 0.1 0.12 0.16 0.2 0.22 0.26 0.3 0.32	0				
FIGHELION (\$00E)FR	0 0.02 0.06	0.16 Lempaux	0.2 0.22	0.26	0.3 0.32

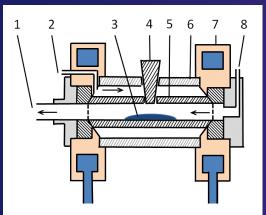
Cmin, %мас	Определяемые элементы
n·10⁻⁵	Na, P39
n·10⁻ ⁶	As, Bi, Si, Te, Sb, Pt, Pb, Ga, Te, B, Au, Sn,Tl, V, Co, Fe
n·10⁻ ⁷	Ag, Cu,Cr, Mo, Zr, Ni, Ti, Zn, Al, Cd, Mn, Ba
n⋅10 ⁻⁸	Be, Ca, Mg

Атомно-эмиссионная спектрометрия с ИСП

2. Атомно-эмиссионный спектрометр с индуктивно связанной плазмой «Гранд ИСП» (ВМК Оптоэлектроника)

Предназначен высокого разрешения с двойным обзором плазмы предназначен для определения химического состава широкого круга образцов. Диапазон определяемых содержаний для ~50 аналитов от n·10 до

n·10⁻⁷ (n ppb)



Технические характеристики:

- диапазон длин волн 190 780 нм;
- время регистрации спектра 1 мс;
- стабильность сигнала не СКО <2%;
- линейный диапазон до 8 порядков;
- рабочая частота 40,7 МГц;
- мощность ИСП от 600 до 2000 Вт;
- стабильность 0,01%;
- расход аргона от 8 л/мин.

3. Атомно-эмиссионная спектрометрия с ИСП Электротермическое испарение для ввода проб в ИСП (ИСП-АЭС+ЭТИ)

«ВМК-Оптоэлектроника»

1 - трубка для транспорта пробы в ИСП, 2 - защитный поток (Ar), 3 - проба, 4 - графитовый стержень (крышка), 5 - графитовая кювета для ЭТА-ААС, 6 - кварцевая трубка, 7 - охлаждаемые держатели,

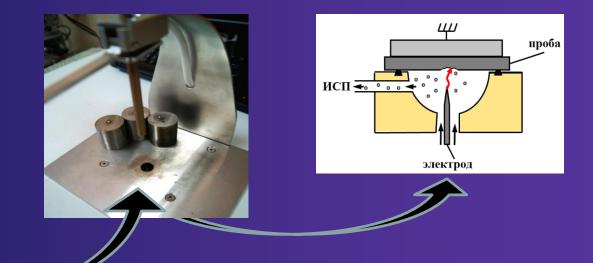
8 - транспортирующий поток (Ar).

Температурная программа:

1- сушка (100С, 45 с);

2 - пауза (10 с);

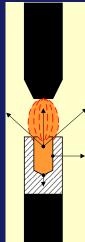
3 - испарение аналитов (2400С, 10 с)


Установлено, что при выбранной температурной программе нагрева в ИСП количественно поступают: Ag, Al, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Ga, In, Mg, Mn, Ni, P, Pb, Pd, Re, Sb, Se, Sn, Sr, Ti, V, Zn.

4. Атомно-эмиссионная спектрометрия с ИСП

Искровой пробоотбор для ввода аэрозоля твердых проб в ИСП-АЭС

Стенд для искрового пробоотбора (ВМК «Оптоэлектроника»)


Анализ твердых образцов неизвестного состава с использованием искрового пробоотбора:

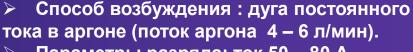
- не требуется разложения и разбавления пробы;
- не нужны чистые реактивы ;
- сокращается временя и трудоемкость выполнения анализа.

Градуировка по стандартным растворам:

Возможность использования стандартных растворов для построения градуировочных графиков с необходимыми диапазонами концентраций определяемых элементов.

Атомно-эмиссионная спектрометрия с дугой постоянного тока (ДПТ-АЭС + МАЭС)

- Способ возбуждения дуга постоянного тока между электродами на воздухе.
- Материал электродов графит марки осч.
- Параметры дугового разряда: ток 5–6 А, напряжение 200-300 В.
- ➤ Характеристики ДПТ Т_е ~ 6000К, е-плотность ~10¹⁵ см⁻³.
- ▶ Пробы: порошки, разбавленные графитовым буфером (1:20, 1:50); растворы, выпаренные на графитовом порошке осч +0,5% NaCl.
- > Градуировка по стандартам на основе графитового порошка + 0,5 NaCl.
- Спектрометр GS-2.



Объекты : металлы (Ga, In, Ne, Bi,) и их оксиды		
C _{min} , % мас	Определяемые элементы (прямой анализ)	
n·10 ⁻⁴ - n·10 ⁻⁶	Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Cr, Cu, In, Ga, Mg, Mo, Mn, Ni, Pt, Pb, Sb, Si, Sn, Te, Ti, Tl, Co, Fe, V, Zn, Zr, (до 40)	
C _{min} , % мас	Определяемые элементы (с предварительным концентрированием)	
n·10 ⁻⁶ - n·10 ⁻⁸	Ag, Al, Au, Ba, Be, Bi, Ca, Cr, Cu, In, Ga, Mg, Mo, Mn, Ni, Pt, Pb, Sn, Ti, Co, Fe, V, Zn, Zr, (15 - 30 в зависимости от основы)	

Атомно-эмиссионная спектрометрия с двухструйным дуговым плазмотроном (ДДП-АЭС+МАЭС)

ДДП-АЭС «Гранд» ВМК «Оптоэлектроника»

- ▶ Параметры разряда: ток 50 80 A, напряжение 200-300 B.
- ➤ Характеристики ДДТ : T_e ~ 8000К, плотность электронов ~10¹⁵ см⁻³.
- Пробы:

порошки, разбавленные графитовым буфером (1:1, 1:3);

растворы, выпаренные на графитовом порошке марки осч.

Градуировка - по стандартам на основе графитового порошка.

Без пробы

Ввод пробы

Работа ДДП при введении порошковых проб

Атомно-эмиссионная спектрометрия с микроволновой плазмой (МВП-АЭС)

Agilent 4100 MP AES

- Возможность анализа проб с высоким уровнем содержания органических веществ.
- ▶ диапазон кислотности, при котором изменение интенсивности сигналов не превышает 5%, он составляет 0.1-0.5М и 0.1-0.9М для редкоземельных элементов.
- Низкая стоимость эксплуатации;
- Простота применения.

Рабочая мощность, Вт	1000
Частота, МГц	2455 ± 5
Плазмообразующий газ	N_2
Расход газа, л/мин	5-6
Спектральный диапазон	178–780 нм

Пределы обнаружения примесей в воде

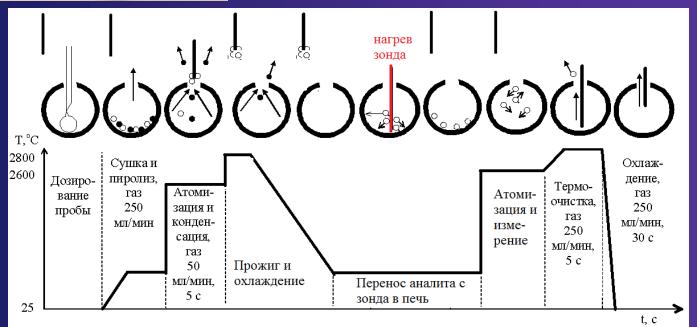
Определяемые элементы	C _{min} , мкг/г
Li, Be, Sr	0,0001 - 0,001
K, Rb, Sc, Ba, La, Ti, Zr, V, Cr, Mn, Fe, Ni, Cu, Ag, Au, B, Al, Si, Pr, Sm, Eu, Gd, Ho, Lu	0,001 - 0,01
Na, Mg, Ca, Y, Hf, Ta, Mo, W, Re, Co, Zn, Cd, Ga, Pb, Ce, Nd, Tb, Dy, Er, Yb	0,01 - 0,1
Nb, Sn, Sb, Te, Bi, Tm	0,1 - 1
As, Se	>1

1. Атомно-абсорбционная спектрометрия (ААС)

- Способы атомизации: пламя, графитовая печь.
- Температуры атомизации: пламя до 2700К; графитовая печь до 3300К.
- Пробы: неорганические и органические растворы.
- Подач проб: аэрозоль (пламя); дозатор 20-50 мкл (графитовая печь).
- Градуировка по стандартным растворам аналитов.

Решаемые задачи:

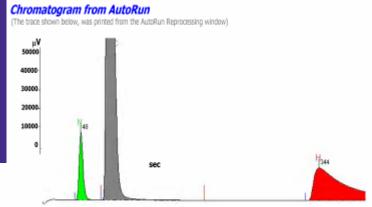
- определение основного состава функциональных материалов, сплавов, кристаллов и др. объектов сложного состава (погрешность ~0,1 0,5%);
- изучение влияния легирования на сцинтилляционные характеристики кристаллов;
- определение содержание примесей (С_{mn} до 10⁻⁶%) в чистых веществах, функциональных материалах, реактивах и объектах окружающей среды;
- изучение закономерностей экстракции благородных металлов (БМ).

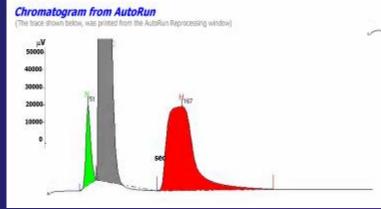

2. Атомно-абсорбционная спектрометрия (ААС)

Приставка АТЗОНД для двухстадийной зондовой атомизации (ДЗА-ЭТААС)

- вольфрамовый зонд улавливает до 50 % аналита;
- удается удалять органические и неорганические матрицы;
- возможность концентрирования аналитов на зонд;
- возможно использование стандартных растворов для прямого анализа твердых проб.

Схема ввода пробы и температурная программа работы устройства для ДЗА в графитовой печи


1. CHN анализ (Evrovector 600)



Разделение пиков азота и углерода в стандартной (1) и оптимизированной (2) методиках CHN-анализа

Методика 2

Окисл. реактор 1050°C Восст. реактор 850°C ГХ колонка 75°C Время анализа 600с

Методика 1		
Окисл. реактор	1150°C	
Восст. реактор	950°C	
ГХ колонка	115°C	
Время анализа	280c	

Использование в качестве катализатора окисления WO_3 , позволило увеличить точность анализа трудноразлагаемых соединений с высоким содержанием азота и фосфора.

Методика	Стандартное отклонение		
	N	С	Н
1	0.11	0.64	0.18
2	0.024	0.065	0.050

2. CHN-S анализ (MICRO cube)

- Конструкция прибора и инжектора кислорода обеспечивает полноту разложения проб и высокую воспроизводимость результатов анализа.
- Базовая комплектация прибора включает автосамплер на 120 образцов.

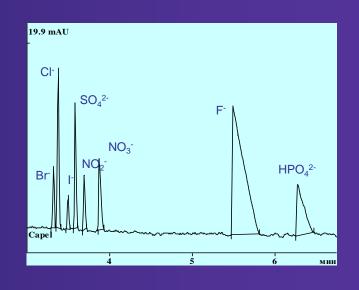
Основные достоинства vario MICRO cube

- ▶ Режимы CHNS, CHN, CNS, CN, N, S анализа и возможность определения O, CI.
- Предназначен для анализа микроколичеств (0,03 - 15 мг) органических и неорганических веществ.
- Сжигание образцов при температурах от 1200 до 1400°C
- **Разделение газов-продуктов сжигания** методом температурно-программируемой сорбции /десорбции.
- ИК- детектор для определения микроколичеств серы (до 2 ppm)
- Возможность анализа образцов с высоким содержанием фтора.
- Калибровка стабильна в течение 1 года.

Капиллярный электрофорез

Принцип работы основан на миграции и разделении компонентов жидкой смеси под действием электрического поля. Позволяет за один ввод пробы идентифицировать и количественно определить несколько компонентов смеси.

Источника света - дейтериевая лампа. Спектральный диапазон - 190-380 нм. Ввод пробы: пневматический, электрокинетический.


Капилляр: материал – кварц,

внутренний диаметр 75 мкм.

Высокое напряжения: - от 1 до 25 кВ

ДОСТОИНСТВА МЕТОДА:

- простота и экспрессность;
- малый расход пробы (50 10 0мкл);
- одновременное определение компонентов:
 - катионов (Na, K, Ca ... органические катионы)
 - анионов (галогениды, нитрат, нитрит, ...)
- пределы обнаружения до 0,1 мкг/г.

Инверсионная вольтамперометрия

Вольтамперометрическая система 797 VA Computrace Stand (Metrom)

НАЗНАЧЕНИЕ

Анализ объектов окружающей среды, чистых веществ, пищевые продукты и биологические материалы.

Определение металлических примесей может быть выполнено с той же чувствительностью, которой характеризуют приборы для ААС и АЭС методов. Низкая стоимость анализа – одно из основных преимуществ вольтамперометрии.

Портативный вольтамперометрический анализатор ИВА-5 (НПО «ИВА»)

Комплекс инструментальных методов рентгенодифрактометрического анализа кристаллов и порошков

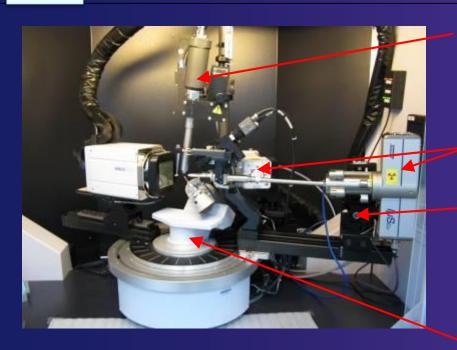
- 1. Рентгеноструктурный анализ монокристаллов:
- МоКα-излучение (графитовый монохроматор);
- четырехкружный гониометр;
- низкотемпературная приставка;
- двухкоординатный детектор.
- 2. Рентгендифрактометрическое исследование поликристаллов:
- СиКα-излучение (Ni-фильтр);
- сцинтилляционный детектор;
- автоматический сбор данных.
- 3. Рентгендифрактометрическое исследование микрообразцов:
- МоКα-излучение (графитовый монохроматор);
- двухкоординатный детектор.

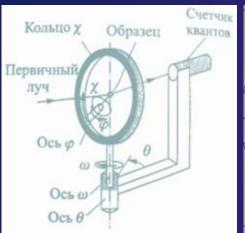
ЛАБОРАТОРИЯ СТРУКТУРНОЙ ХИМИИ №520 Зав. лабораторией д.ф.-м.н. Громилов С.А.

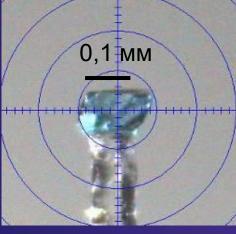
Приборы для рентгеноструктурного анализа монокристаллов

1. Bruker X8APEX

Bruker X8APEX позволяет изучать кристаллы размером до ~ 30 мкм


2. Bruker Duo




Bruker DUO позволяет изучать размером до ~ 10 мкм

Рентгеноструктурный анализ монокристаллов Bruker X8APEX (1) и Bruker DUO (2)

Низкотемпературные приставки

- 1. температура 90÷300±0.1 K;
- 2. температура **90÷400±0.1 K**

Две рентгеновские трубки (2) СиКα или МоКα

Двухкоординатные детекторы

- 1. 2048 × 2048 точек;
- 2. 4096 × 4096 точек Время считывания 0,3 с

Четырехкружные гониометры

- скорость вращения осей 4000°/мин;
- точность установки угла **0.002°**;
- •пересечение всех четырех осей в сфере Ø<5 мкм

Дополнительные возможности

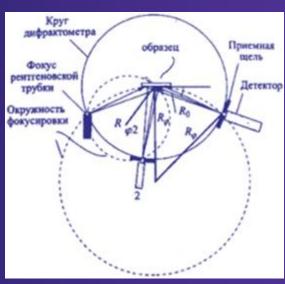
- прецизионное определение ПЭЯ;
- характеризация тонких пленок

Приборы для рентгеноструктурного анализа монокристаллов

3. Bruker D8 Venture

Дополнительные возможности Bruker D8 Venture

- высокая интенсивность источников излучения *съемка мелких или слабодифрагирующих проб*
- большой динамический диапазон детектора характеризация модулированных и разупорядоченных структур
- высокая скорость эксперимента in situ измерения (изменение температуры, облучение)


Исследование поликристаллов в схеме Брэгга-Брентано дифрактометр ДРОН-3М

- СиКα-излучение (Ni-фильтр);
- сцинтилляционный детектор;
- автоматический сбор данных.

Позволяет исследовать:

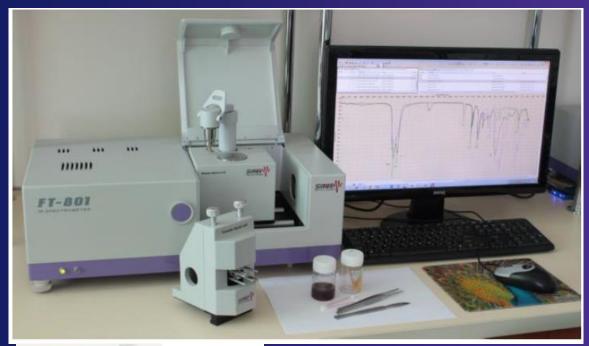
порошки; покрытия, металлические шайбы, керамики и др.

Порошковый дифрактометр Shimadzu XRD 7000S

Предназначен для рентгенографического исследования поликристаллических веществ

Масса пробы от 10 мг. Чувствительность по фазовому составу 3-5%

- υ тип гониометра: вертикальный θ-θ;
- радиус гониометра: 200-275 мм;
- тип детектора: сцинтилляционный;
- диапазон углов 20: от -12 до 164°
- минимальный шаг 20: 0,0002 °


Комплекс методов молекулярной спектроскопии для исследования молекулярных связей

- 1. Спектроскопия ИК-поглощения и спектроскопия комбинационного рассеяния (КР) позволяют исследовать:
- кластеры тяжелых металлов;
- металло-органические и координационные соединения;
- соединения включения;
- тонкие слои и пленки;
- кристаллические структуры.
- 2. ИК и КР спектры содержат сведения:
- о структуре, составе, фазовом состоянии, межатомном взаимодействии;
- о взаимодействиях между фононной, электронной и магнитной подсистемами в кристалле.

ЛАБОРАТОРИЯ ХИМИИ ЛЕТУЧИХ СОЕДИНЕНИЙ №313 Зав. лабораторией профессор РАН, д.х.н. Басова Т.В.

ИК фурье-спектрометр ФТ-801 (FT-801) «СИМЕКС»

предназначен для регистрации спектров в области поглощения твердых, жидких и газообразных веществ (от 470 до 5700 см⁻¹), а также для анализа смесей

Прибор оснащен:

Приставкой нарушенного полного внутреннего отражения (НПВО-АТ) с верхним расположением образца и визуализацией объекта.

Приставкой для экспрессанализа жидкостей с регулировкой толщины слоя (РЖК)

Блоком контроля температуры (до 220°C)

ИК Фурье спектрометр VERTEX 80

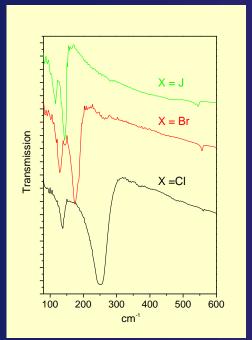
 Спектральный диапазон:
 10-8000 см⁻¹

 Разрешение:
 до 0.2 см⁻¹

Разрешение: до 0.2 см⁻¹ Точность волнового числа: до 0.01 см⁻¹

Фотометрическая точность: 0.1 Т

He-Криостат: 80-7000 см⁻¹


Диапазон температур: 3-500 К

Микроскоп: 600-7000 см⁻¹

Диаметр пятна:

Поляризатор: 600-4000 см⁻¹

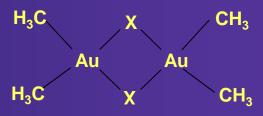
Применение

Низкочастотная область: кластеры тяжелых металлов; соединения включения.

Микроскопия:

пластинки кристаллов; пленки.

Низкие температуры:


100 мкм

фазовые переходы; водородная связь.

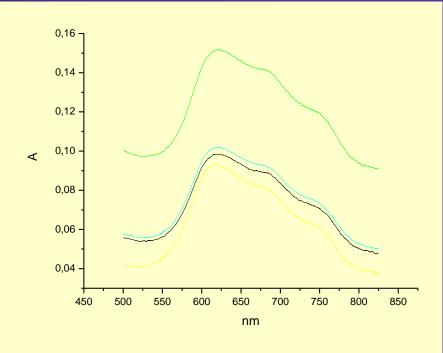
Поляризация:

ориентированные кристаллы; пленки

Спектр пропускания в таблетках полиэтилена

UV-VIS-NIR спектрометр UV-3101 PC, Shimadzu

Технические характеристики


Спектральный диапазон: 190-3200 нм

 Разрешение:
 0.1 нм

 Точность волнового числа:
 0.1 нм

 Фотометрическая точность:
 0.1 %T

Поляризационные спектры поглощения плёнки CuPc (1) в видимой области

КР-спектрометр LabRAM HR Evolution

Приставка для исследования образцов при низких температурах (до 3 К)

• Технические характеристики:

- Возможность регистрации на одной из четырех линий (457, 488, 514, 632 нм);
- Высокая разрешающая способность (0.3 см-1);
- Низкочастотная область от ~ 5 см-1;
- Картирование поверхности пленок;
- Высокая скорость регистрации;
- Диапазон температур 3-300 К.

Методы электронной (ЭМ) и атомно-силовой (ACM) микроскопии

1. Сканирующий электронный микроскоп высокого разрешения с энергодисперсионным анализатором JEOL JSM 6700F

ЛАБОРАТОРИЯ ЭПИТАКСИАЛЬНЫХ СЛОЕВ №417 Зав. лабораторией к.х.н. Косинова М.Л.

2. Настольный сканирующий электронный микроскоп с энергодисперсионным анализатором хим. состава ТМ-3000

ЛАБОРАТОРИЯ СПЕКТРОСКОПИИ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ №521

Зав. лабораторией профессор РАН, д.х.н. Басова Т.В

3. Атомно-силовой микроскоп ЛАБОРАТОРИЯ ХИМИИ ЭКСТРАКЦИОННЫХ ПРОЦЕССОВ №302

Зав. лабораторией к.х.н. Поповецкий П.С.

1. Электронная микроскопия и энергодисперсионная рентгеновская спектрометрия

Сканирующий электронный микроскоп JEOL JSM 6700F

НАЗНАЧЕНИЕ

Исследование морфологии поверхности и элементного состава образцов (все элементы от Ве до U).

Микроскоп	JSM 6700F
Увеличение	min ×25 max ×650000
Разрешение	1 нм
Ускоряющее напряжение	0.5 – 30 кВ
Управление	Машинное
Вывод изображения	На компьютер
Детекторы	Вторичных электронов, рентгеновских лучей
Катод	Полевой эмиссии
Рабочее расстояние	1,5 – 25 мм
Пределы перемещения	Х: 70 мм; Ү: 50 мм
Наклон образца	От -50 до 600

2. Настольный сканирующий электронный микроскоп с энергодисперсионным анализатором химического состава TM-3000

Технические характеристики:

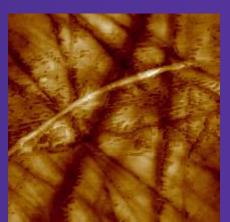
- Высокий вакуум: диафрагменный насос + турбомолекулярный насос.
- Предельное разрешение 30 нм.
- Предельное увеличение 30 000, оптимальное увеличение 5 000.

Имеется режим стока заряда при пониженном вакууме для исследования диэлектриков.

ЭДА анализатор Bruker Nano позволяет полуколичественно определять распределение основных и неосновных элементов (от В до U) в «точке», вдоль линии и по площади.

Недопустимо исследовать магнитные образцы и образцы, содержащие летучие компоненты.

3. Атомно-силовой микроскоп марка (Фирма)


Технические характеристики

Размер образца	до 24х19 мм	
Мин. шаг сканирования	0.006 нм	
Измерительные головки АСМ		
	СТМ: 30 пА-50 нА, СКВ шум 4 пА	
Система видеонаблюдения		
Разрешение	3 мкм	
CCD увеличение	от 58х до 578х	
ССD увеличение ХҮ позиционир. образца		

Фрагмент поверхности (3x3 mkm) пленки SiCN

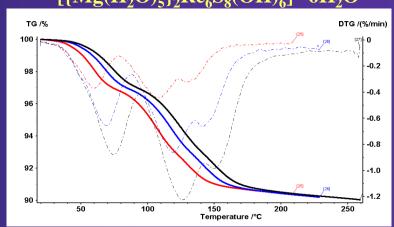
Связка двухстенных углеродных нанотруб (диаметр 33 нм)

ЛАБОРАТОРИЯ ХИМИЙ ЭКСТРАКЦИОННЫХ ПРОЦЕССОВ №302

Зав. лабораторией д.х.н. Булавченко А.И.

Термогравиметрия

1. Термоанализатор TG 209 Iris Thermo Microbalance (NETZSCH)


Назначение дифференциальный термический анализ (C – DTA):

получение сигнала ДТА по разнице между теоретической температурой образца (при линейном нагреве без теплового эффекта) и реальной его температурой.

Технические характеристики

Максимальная масса образца — до 2000 мг; Точность определения массы \pm 0.1 µg Температурный интервал 20^{0} 1000^{0} C Скорость нагрева 0.00180 К/мин Поток инертного газа (Ar, He) 5 250 мл/мин Держатели образца: $Al_{2}O_{3}$, Al, Pt d = 6.7 мм, h = 2.7 мм (V = 0.085 мл)

Термогравиметрические кривые при нескольких скоростях нагрева $[\{Mg(H_2O)_5\}_2Re_6S_8(OH)_6] \cdot 6H_2O$

ЛАБОРАТОРИЯ ХИМИИ ПЛАТИНОВЫХ МЕТАЛЛОВ №308

Зав. лабораторией д.х.н. Коренев С.В.

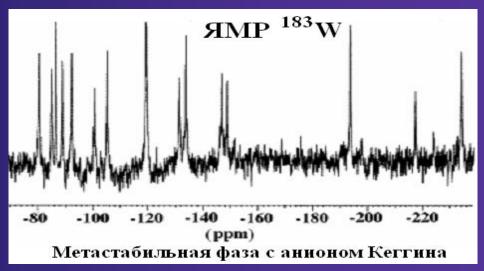
2. Термоанализатор STA 449 F1 Jupiter (NETZSCH)

Технические характеристики

- Температурный диапазон: -150 °C ... 2000 °C;
- Скорости нагрева и охлаждения: 0.001 K/мин ... 100 K/мин ;
- Диапазон взвешивания до 5000 мг;
- Разрешение TГ: 0.025 мкг / 0.1 мкг;
- Разрешение ДСК < 1 мкВт;
- Атмосферы: инертная, окислительная, восстановительная, вакуум;
- Вакуум до 10⁻⁴ мбар (10⁻² Па) ;
- Системы держателей образцов TG-DSC, TG-DSC-Cp и TG-DTA;
- Масса образца: 10-20 мг;
- Стальная печь: от -150 °C до 1000 °C;
- Графитовая печь: от 25 °C до 2000 °C;
- Тигли: Al (600 °C), Al₂O₃ (1700 °C), Pt/Rh (1700 °C), ZrO₂ (1900 °C), W (2400 °C), графит (2400 °C).

ЛАБОРАТОРИЯ ХИМИИ ПЛАТИНОВЫХ МЕТАЛЛОВ №308

Зав. лабораторией д.х.н. Коренев С.В.


Спектроскопия ядерного магнитного резонанса (ЯМР) высокого разрешения

ЯМР спектрометр Bruker Advance 500

предназначен для исследования молекулярного и электронного строения комплексов в жидкой и твердой фазах, включая двумерную ЯМР-спектроскопию и MAS ЯМР.

Исследуемые ядра: от 1 Н до 183 W.

лаборатория физхимии конденсированных сред №526 Зав. лабораторией д.ф.-м.н. Козлова С.Г.

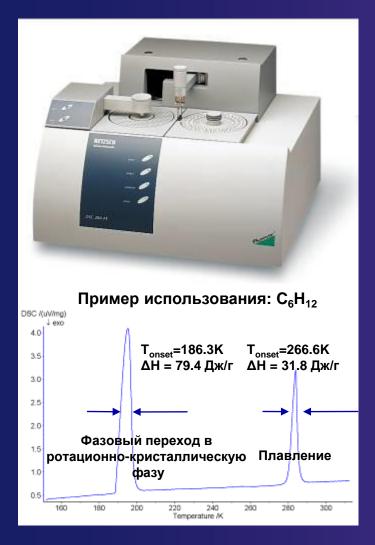
Автоматическая система измерения физических свойств на основе сверхпроводящего магнита 9 Тл с замкнутой системой охлаждения

Cryo-Free Measurement System Cryogenic Limited

Возможности оборудования

- Измерение теплоемкости 2,5-350К; 0-9Тл: релаксационный калориметр; оптический волновод для облучения образцов.
- Измерение магнитных свойств 2,5-350K; 0-9Тл: измерение магнитного момента и восприимчивости (вибромагнитометр, VSM).
- Измерение сопротивления и эффекта Холла 2,5-350K; 0-9Tл:

измерение проводимости, электрического и холловского сопротивления при постоянном токе.



ЛАБОРАТОРИЯ ФИЗХИМИИ КОНДЕНСИРОВАННЫХ СРЕД №526

Зав. лабораторией д.ф.-м.н. Козлова С.Г. Заявки на исследование на CFMS Cryogenic Limited подавать с.н.с., к.ф.-м.н. Пищур Д.П.

Дифференциальная сканирующая калориметрия (ДСК)

ДСК Netzsch 204 F1 Phoenix

позволяет получать термодинамические характеристики веществ с высокой точностью. Измеряемые величины: энтальпия, энтропия и температура фазовых перехода; теплоемкость.

Технические характеристики

- Температурный диапазон: 120 ... 900К;
- Скорость нагрева/охлаждения: 0.001 ... 100 К/мин;
- Погрешность температурной шкалы: 0.2K (In);
- Погрешность измерения теплоемкости: 2%;
- Возможность работы с образцами массой ~1 мг;
- Возможность обдува измерительной ячейки инертным газом.

лаборатория физхимии конденсированных сред №526 Зав. лабораторией д.ф.-м.н. Козлова С.Г.

Вычислительный кластер HP DL380G7 + SL390s

Вычислительный кластер

предназначен для проведения квантово-химических расчетов молекул, ионов и периодических структур

Технические характеристики:

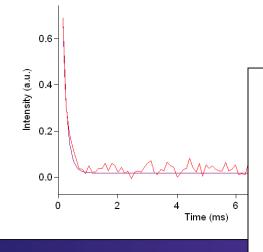
- 1. Количество узлов: 1+4
- 2. Сеть: Gigabit Ethernet
- 3. Количество вычислительных ядер: 60
- 4. Общий объем оперативной памяти: 168 Гб
- 5. Объем памяти под пользовательские данные: 2,5 Тб
- 6. Общий объем памяти под временные файлы: 3,6 Тб
- 7. Операционная система: RedHat Enterprise Linux 6.2

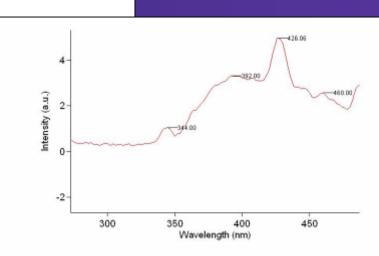
Установленные квантово-химические программы:

- 1. Программы для расчетов изолированных молекул и ионов:
- ADF2010, ADF2012, Gaussian 03, Gaussian 09, Nwchem 6.1
- 2. Программы для расчетов периодических структур:
- **Quantum Espresso 4.3.2, BAND2010, BAND2012, Elk 1.3.20**
- 3. Вспомогательные программы и графические интерфейсы:
- Pwgui 4.3.2, XCrySDen 1.5.25, ADFgui, dgrid 4.6, babel 1.6

лаборатория физхимии конденсированных сред №526 Зав. лабораторией д.ф.-м.н. Козлова С.Г.

Определение люминесцентных свойств веществ и материалов

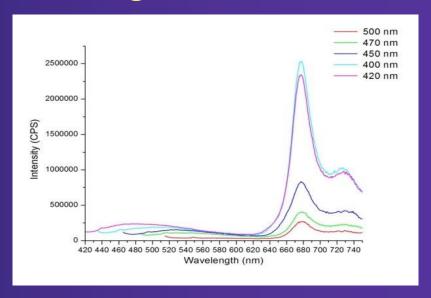

Спектрофлуориметр Cary Eclipse Основные характеристики прибора:


Оптический диапазон: регистрация спектров люминесценции в диапазоне 200 – 900 нм.

Измерение времен жизни люминесценции: 1 мкс -10 с.

Температурный диапазон съемки: 77 – 300 К.

В комплект прибора входят приставки для съемки спектров: кристаллов, порошков, пленок, растворов.


Разрабатывается методика определения квантового выхода люминесценции

ЛАБОРАТОРИЯ ФИЗХИМИИ ГАЗОВЫХ СРЕД №554

Зав. лабораторией к.ф.-м.н. Шевень Д.Г.

Определение люминесцентных свойств веществ и материалов Спектрофлуориметр Fluorolog-3 Horiba

Основные характеристики прибора:

Оптический диапазон: регистрация спектров люминесценции в диапазоне 290 – 1050 нм.

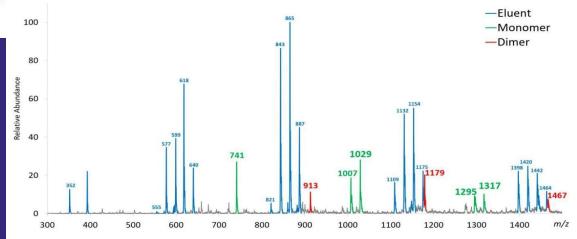
Измерение времен жизни люминесценции: 10 нс -10 с.

Температурный диапазон съемки: 77 – 300 К.

В комплект прибора входят приставки для съемки спектров: кристаллов, порошков, пленок, растворов, измерения абсолютного квантового выхода.

ЛАБОРАТОРИЯ ФИЗХИМИИ ГАЗОВЫХ СРЕД №554

Зав. лабораторией к.ф.-м.н. Шевень Д.Г.


Высокоэффективная жидкостная хроматография/масс спектрометрия на основе Agilent 1260 LC/6130 MS Single Quadrupole (HPLC-MS)

Основные характеристики прибора:

Способ ионизации: электрораспыление (ESI), химическая ионизация при атмосферном давлении (APCI)

Диапазон анализируемых масс: 10 - 3000 m/z Основные растворители: вода, метанол, этанол, ацетонитрил и их смеси.

ЛАБОРАТОРИЯ ФИЗХИМИИ ГАЗОВЫХ СРЕД №554

Зав. лабораторией к.ф.-м.н. Шевень Д.Г.

Рентгенофотоэлектронный спектрометр FleXPS фирмы SPECS

Предназначен для количественного и качественного анализа поверхности твердых тел и изучения химической связи

Спектрометр оборудован:

- источниками рентгеновского излучения Al/Mg Ka, Ag La;
- источником ультрафиолетового излучения Не I/II.

Имеется возможность послойного анализа тонких пленок с использованием послойного распыления ионным пучком

ЛАБОРАТОРИЯ ФИЗИКОХИМИИ НАНОМАТЕРИАЛОВ №404

Зав. лабораторией д.ф.-м.н. Окотруб А.В.

СКВИД магнитометр MPMS-XL

Предназначен для измерения температурной зависимости намагниченности (магнитной восприимчивости) в режимах охлаждения и нагрева с точно заданной скоростью, а также полевые зависимости намагниченности при фиксированной температуре.

Технические характеристики:

- температурный диапазон 1.77-400 К
- диапазон магнитных полей от -10 кЭ до +10 кЭ
- чувствительность 10-8 ети
- размер образца до $5 \times 5 \times 5$ мм³
- допустимый вид образцов кристаллы, порошки, пленки

ЛАБОРАТОРИЯ ФИЗИКОХИМИИ НАНОМАТЕРИАЛОВ №404

Зав. лабораторией д.ф.-м.н. Окотруб А.В.

ЛАБОРАТОРИЯ ФИЗИКИ НИЗКИХ ТЕМПЕРАТУР №425

Зав. лабораторией к.ф.-м.н. Лавров А.Н.

Форма заявки на исследование образцов в ЦКП ИНХ СО РАН

Заявка на исследование образцов в ЦКП ИНХ СО РАН от лаборатории №_____

Шифр образца		
Название вещества		
Требуемый вид исследования/анализа)		
Особые свойства вещества (растворимость, гигроскопичность, летучесть, пирофорность и т.п.)		
Токсичность		
Необходимые условия хранения		
Тематика, в рамках которой проводятся исследова (план НИР ИНХ СО РАН, проект РФФИ, ИП СО РАН,		
Заказчик (ФИО полностью, тел.)		
Зав. лабораторией	/Подпись	
201r.		

По вопросам, связанным с организацией и функционированием ЦКП ИНХ СО РАН, обращаться к д.т.н. Сапрыкину Анатолию Ильичу