На правах рукописи

БРЫЛЕВА Юлия Анатольевна

СИНТЕЗ, СТРОЕНИЕ, МАГНИТНЫЕ СВОЙСТВА И ФОТОЛЮМИНЕСЦЕНЦИЯ КОМПЛЕКСОВ Ln(III) (Ln = Sm, Gd, Eu, Tb, Dy, Tm), СОДЕРЖАЩИХ 1,1-ДИТИОЛАТНЫЕ ЛИГАНДЫ И N-ГЕТЕРОЦИКЛЫ ИЛИ Ph₃PO

02.00.01 - неорганическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук

Новосибирск - 2015

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук

Научный руководитель

доктор химических наук, профессор, главный научный сотрудник Ларионов Станислав Васильевич

Официальные оппоненты:

доктор химических наук, профессор, главный научный сотрудник Юхин Юрий Михайлович Федеральное государственное бюджетное учреждение науки Институт химии твердого тела и механохимии Сибирского отделения Российской академии наук (г. Новосибирск)

кандидат химических наук, старший научный сотрудник Поздняков Иван Павлович Федеральное государственное бюджетное учреждение науки Институт химической кинетики и горения им. В.В. Воеводского Сибирского отделения Российской академии наук (г. Новосибирск)

Ведущая организация

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский государственный университет им. М.В. Ломоносова»

Защита состоится «17» июня 2015 г. в 10.00 на заседании диссертационного совета Д 003.051.01 в Федеральном государственном бюджетном учреждении науки Институте неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук по адресу: просп. Акад. Лаврентьева, 3, Новосибирск, 630090

С диссертацией можно ознакомиться в библиотеке Федерального государственного бюджетного учреждения науки Института неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук и на сайте http://niic.nsc.ru/institute/councils/disser/

Автореферат разослан «24 апреля» апреля 2015 г.

Ученый секретарь диссертационного совета доктор физико-математических наук

В.А. Надолинный

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Синтез, исследование строения и свойств комплексов лантанидов (Ln) с органическими лигандами, обладающих разнообразными функциональными свойствами, является актуальным направлением современной координационной химии. Эти комплексы находят широкое применение в виде индивидуальных соединений и как молекулярные предшественники неорганических материалов. Люминесценция является одним из важнейших функциональных свойств комплексов Ln. Для них характерно сочетание высокой эффективности люминесценции и узкой полосы эмиссии, что позволяет отнести эти соединения к числу перспективных материалов для создания люминесцентных устройств. Кроме того, некоторые комплексы Ln проявляют свойства молекулярных магнитов, что интересно для получения новых магнитных материалов.

В настоящее время успешно развивается направление по синтезу комплексов ионов Ln^{3+} (жёстких кислот по принципу Пирсона) с N- и О-донорными органическими лигандами (жёсткими основаниями), обладающих фото- и электролюминесцентными свойствами. Это вызвано как стремлением к получению новых люминесцирующих веществ, установлению взаимосвязей между строением комплексов и люминесцентными свойствами, так и перспективами использования этих соединений для создания люминесцентных устройств и сенсоров. Только недавно появились данные о люминесценции комплексов Ln, имеющих в своем составе 1,1-дитиолатные органические лиганды (мягкие основания) ([1]–[6]). В связи с этим большой интерес вызывает дальнейшее развитие исследований по получению люминесцирующих комплексов Ln с S-содержащими лигандами. К числу перспективных S-содержащих лигандов для синтеза люминесцирующих комплексов Ln следует отнести 1,1-дитиолатные лиганды, имеющие группы CS₂ и PS₂ (дитиокарбамат-, дитиофосфинат-, дитиофосфат-, ксантогенат-ионы).

Сочетание жёсткой кислоты (катиона Ln) и мягкого основания (S-codepжащего аниона) делают соединения, имеющие только S-содержащие лиганды, относительно неустойчивыми. Одним из эффективных способов стабилизации комплексов Ln с S-содержащими лигандами является введение в координационную сферу дополнительных N- и O-содержащих лигандов (например, N-гетероциклов, Ph₃PO). Кроме того, координация флуорофоров – азотистых гетероциклов и O-донорных лигандов, содержащих сопряженные π -системы, может приводить к увеличению эффективности люминесценции образующихся разнолигандных комплексов Ln. Большой интерес представляют комплексы ионов Sm³⁺, Eu³⁺, Tb³⁺, Dy³⁺ и Tm³⁺, обладающих люминесценцией в видимой области спектра. Кроме того, перспективно исследование магнитных свойств этого класса соединений.

Степень разработанности темы. Число публикаций, посвящённых синтезу, исследованию строения и свойств комплексов Ln(III) с 1,1-дитиолатными лигандами намного меньше по сравнению с количеством работ, посвящённых исследованию комплексов Ln(III) с N- и О-донорными лигандами. Комплексы Ln(III) с 1,1-дитиолатными лигандами исследуются в основном с целью получения предшественников сульфидов лантанидов и экстракционного разделения лантанидов и актинидов. Лишь недавно внимание было обращено на исследование люминесценции таких соединений. В литературе имеются лишь несколько статей, посвящённых изучению фотолюминесценции этих комплексов ([1]–[6]). Данные о магнитных свойствах комплексов Ln(III) с 1,1-дитиолатными лигандами в широком интервале температур в литературе отсутствуют.

Цель работы. Синтез, исследование строения, магнитных свойств и фотолюминесценции (ФЛ) комплексов Ln(III) (Ln = Sm, Gd, Eu, Tb, Dy, Tm) с пирролидиндитиокарбамат- ($C_4H_8NCS_2^-$), бензилдитиокарбамат- (PhCH₂NHCS₂⁻), диизобутилдитиофосфинат- (*i*-Bu₂PS₂⁻), диизопропилдитиофосфат-ионами ((*i*-PrO)₂PS₂⁻) и азотистыми гетероциклами или трифенилфосфиноксидом (Ph₃PO). В качестве азотсодержащих лигандов были выбраны 1,10-фенантролин (Phen), 2,2'-бипиридин (2,2'-Bipy), 4,4'-бипиридин (4,4'-Bipy), 6,6'-бихинолин (6,6'-Biq).

В связи с этим решались следующие задачи:

• разработка методов синтеза комплексов Ln(III), содержащих 1,1-дитиолатные лиганды и N-гетероциклы или Ph₃PO;

• получение данных о составе и строении синтезированных соединений с помощью элементного анализа, инфракрасной спектроскопии (ИК), рентгеноструктурного анализа (РСА), рентгенофазового анализа (РФА);

• исследование магнитных свойств соединений;

• изучение ФЛ соединений, установление зависимостей интенсивности ФЛ от состава и строения комплексов.

Научная новизна. Разработаны методики синтеза 29 новых координационных соединений. В их число входят разнолигандные комплексы Ln(III) (Ln = Sm, Gd, Eu, Tb, Dy, Tm), содержащие два типа лигандов: 1,1-дитиолатные лиганды (ионы C₄H₈NCS₂⁻, PhCH₂NHCS₂⁻, *i*-Bu₂PS₂⁻, (*i*-PrO)₂PS₂⁻) и азотистые гетероциклы (Phen, 2,2'-Bipy, 4,4'-Bipy, 6,6'-Biq) или Ph₃PO. Синтезирован комплекс [Sm(6,6'-Biq)(*i*-Bu₂PS₂)₃]_n, который является первым примером координационного полимера для комплексов Ln с 1,1-дитиолатными лигандами. Получены координационные соединения состава [Ln(L)(*i*-Bu₂PS₂)₂(NO₃)] (Ln = Sm, Tb, Dy, Tm; L = Phen, 2,2'-Віру), имеющие три типа лигандов. Синтезированы *тетракис*-комплексы $NH_4[Gd(C_4H_8NCS_2)_4]$ и $Et_4N[Gd(i-Bu_2PS_2)_4]$. Предложена новая метолика синтеза известных комплексов $[Ln(Phen)(C_4H_8NCS_2)_3]$ (Ln = Sm, Gd, Eu, Tb, Dy, Tm).

Выращены монокристаллы 8 соединений – представителей основных групп синтезированных комплексов. Методом PCA установлены их кристаллические структуры, симметрии координационных полиэдров и способы координации *i*-Bu₂PS₂⁻, C₄H₈NCS₂⁻, NO₃⁻ионов и Phen, 2,2'Bipy, 6,6'-Biq. На основании данных РФА и ИК-спектроскопии сделаны выводы о строении остальных соединений.

Найдено, что при 300К исследованные комплексы являются парамагнетиками. Зависимости $\mu_{3\phi\phi}(T)$ в интервале температур 2–300К характерны для комплексов ионов Ln³⁺. Установлено, что комплексы [Tb(Phen)(C₄H₈NCS₂)₃], [Dy(2,2'-Bipy)(C₄H₈NCS₂)₃]·0.5CH₂Cl₂, [Ln(Phen)(*i*-Bu₂PS₂)₂(NO₃)] (Ln = Tb, Dy, Tm) при 2К переходят в магнитно-упорядоченное состояние.

Найдено, что большинство полученных соединений в твёрдой фазе при 300К обладает ФЛ в видимой области спектра. Из спектров фосфоресценции соединений Gd^{3+} определены величины энергий триплетных уровней ионов $C_4H_8NCS_2^-$ и *i*-Bu₂PS₂⁻. Установлены зависимости интенсивности ФЛ соединений от природы Ln, типа 1,1-дитиолатного и N-, О-содержащих лигандов, числа 1,1-дитиолатных лигандов, входящих в состав комплексов.

При исследовании $\Phi \Pi$ системы [Eu(Phen)(*i*-Bu₂PS₂)₂(NO₃)]– [Tb(Phen)(*i*-Bu₂PS₂)₂(NO₃)] найдено, что происходит перенос энергии от Tb(III) к Eu(III), позволяющий зарегистрировать в этой системе $\Phi \Pi$ иона Eu³⁺.

Практическая значимость. Методики синтеза разнолигандных 1,1-дитиолатных комплексов Ln(III), содержащих N- и О-донорные лигандыфлуорофоры, могут быть использованы химиками-синтетиками для целенаправленного получения новых люминесцирующих соединений Ln(III). Информация о ФЛ синтезированных комплексов полезна для оценки возможности их использования в качестве люминесцирующих материалов. Результаты PCA, которые вошли в Кембриджский банк структурных данных, а также данные о магнитных свойствах полученных комплексов могут быть использованы как справочные материалы.

Методология и методы диссертационного исследования. Разработка методик синтеза комплексов, исследование их структуры и свойств в данной работе осуществлялись с опорой на методологию синтеза комплексных соединений, на основы теории координационных соединений и теории строения вещества. Основными методами исследования комплексов были элементный анализ, РСА, РФА, ИКи люминесцентная спектроскопия, магнетохимический метод.

На защиту выносятся:

• методики синтеза комплексов Ln(III) (Ln = Sm, Gd, Eu, Tb, Dy, Tm), содержащих 1,1-дитиолатные лиганды и N-гетероциклы или Ph₃PO;

• данные о составе и строении синтезированных соединений, полученные с помощью элементного анализа, РСА, РФА, ИК-спектроскопии;

• данные о магнитных свойствах ряда комплексов;

• результаты исследования фотолюминесценции полученных соединений и их интерпретация.

Апробация работы. Основные результаты работы докладывались на 9 конференциях: 7-м и 9-м семинарах СО РАН – УрО РАН «Термодинамика и материаловедение» (Новосибирск, 2010; 2014), XLVIII и XLIX Международных научных студенческих конференциях «Студент и научно-технический прогресс» (Новосибирск, 2010; 2011), 7-й Всероссийской конференции по химии полиядерных соединений и кластеров «Кластер-2012» (Новосибирск,

2012), Конкурсе-конференции молодых учёных, посвящённой 110-летию со дня рождения академика А.В. Николаева (Новосибирск, 2012), Школе-конференции молодых учёных, посвящённой памяти профессора С.В. Земскова «Неорганические соединения и функциональные материалы» (Новосибирск, 2013), 14-й Международной конференции по молекулярным магнетикам (Санкт-Петербург, 2014), XXVI Международной Чугаевской конференции по координационной химии (Казань, 2014).

Публикации. По теме диссертации опубликованы 7 статей в журналах, рекомендованных ВАК, и тезисы докладов 9 конференций.

Личный вклад соискателя. Разработка методик синтеза соединений, выращивание монокристаллов для РСА, подготовка образцов для физикохимических исследований. Интерпретация данных химического, рентгенофазового анализов, данных РСА, магнетохимических измерений, ИК- и люминесцентной спектроскопии выполнена соискателем самостоятельно или совместно с соавторами. Автор участвовал в разработке плана исследований, обсуждении результатов, формулировке выводов и подготовке публикаций по теме диссертационной работы.

Структура и объём работы. Диссертация изложена на 142 страницах, содержит 68 рисунков и 22 таблицы. Работа состоит из введения, обзора литературы (гл. 1), экспериментальной части (гл. 2), результатов и их обсуждения (гл. 3), выводов и списка цитируемой литературы (169 наименований).

ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Во *введении* раскрыта актуальность темы диссертации, определены цели и задачи исследований, сформулирована научная новизна, практическая значимость работы и положения, которые выносятся на защиту.

Первая глава диссертации содержит литературный обзор, в котором рассмотрены методы синтеза, данные по исследованию структуры и физикохимических свойств комплексов лантанидов с дитиокарбамат-, дитиофосфинат- и дитиофосфат-ионами. Отдельная глава посвящена обзору публикаций, посвящённых исследованию фотолюминесцентных свойств этих соединений. Обзор литературы завершается постановкой задачи, в которой определяется проблематика данной работы и пути её решения.

Во *второй главе* изложена экспериментальная часть работы. В ней приведены данные по использованным реактивам, оборудованию, методам исследования физико-химических свойств соединений, методики синтеза комплексов, данные о выращивании монокристаллов комплексов и кристаллографические характеристики соединений.

Третья глава посвящена обсуждению синтеза, строения, магнитных свойств и фотолюминесценции полученных соединений.

Список синтезированных соединений и методы их исследования

N⁰	Формула	Методы исследования*
1	NH ₄ [Gd(C ₄ H ₈ NCS ₂) ₄	ЭА, ИК, ФЛ
2**	$[Sm(Phen)(C_4H_8NCS_2)_3]$	ЭА, ИК, РФА, ПО, МХМ, ФЛ
3**	[Eu(Phen)(C ₄ H ₈ NCS ₂) ₃]	ЭА, ИК, РФА, МХМ, ФЛ
4**	[Gd(Phen)(C ₄ H ₈ NCS ₂) ₃]	ЭА, ИК, РФА, ФЛ
5**	$[Tb(Phen)(C_4H_8NCS_2)_3]$	ЭА, ИК, РФА, МХМ, ФЛ
6**	[Dy(Phen)(C ₄ H ₈ NCS ₂) ₃]	ЭА, ИК, РСА, РФА, МХМ, ФЛ
7**	$[Tm(Phen)(C_4H_8NCS_2)_3]$	ЭА, ИК, РФА, МХМ, ФЛ
8	$[Sm(2,2'-Bipy)(C_4H_8NCS_2)_3]\cdot 0.5CH_2Cl_2$	ЭА, ИК, РСА, РФА, ТГ, МХМ, ФЛ
9	$[Eu(2,2'-Bipy)(C_4H_8NCS_2)_3] \cdot 0.5CH_2Cl_2$	ЭА, ИК, РФА, МХМ, ФЛ
10	$[Tb(2,2'-Bipy)(C_4H_8NCS_2)_3] \cdot 0.5CH_2Cl_2$	ЭА, ИК, РФА, МХМ, ФЛ
11	$[Dy(2,2'-Bipy)(C_4H_8NCS_2)_3] \cdot 0.5CH_2Cl_2$	ЭА, ИК, РФА, МХМ, ФЛ
12	$[Tm(2,2'-Bipy)(C_4H_8NCS_2)_3]\cdot 0.5CH_2Cl_2$	ЭА, ИК, РФА, МХМ, ФЛ
13	Sm(Phen)(PhCH ₂ NHCS ₂) ₃	ЭА, ИК, РФА, ФЛ
14	Eu(Phen)(PhCH ₂ NHCS ₂) ₃	ЭА, ИК, РФА, ФЛ
15	Tb(Phen)(PhCH ₂ NHCS ₂) ₃ ·CH ₂ Cl ₂	ЭА, ИК, РФА, ФЛ
16	$Sm(Ph_3PO)(C_4H_8NCS_2)_3$	ЭА, ИК, РФА, ФЛ
17	$Eu(Ph_3PO)(C_4H_8NCS_2)_3$	ЭА, ИК, РФА, ФЛ
18	Tb(Ph ₃ PO)(C ₄ H ₈ NCS ₂) ₃	ЭА, ИК, РФА, ФЛ
19	$Sm(Ph_3PO)_2(C_4H_8NCS_2)_3$	ЭА, ИК, РФА, ФЛ
20	$Eu(Ph_3PO)_2(C_4H_8NCS_2)_3$	ЭА, ИК, РФА, ФЛ
21	$Et_4N[Gd(i-Bu_2PS_2)_4]$	ЭА, ИК, ФЛ
22**	$[Sm(Phen)(i-Bu_2PS_2)_3]$	ЭА, ИК, ПО, РСА, РФА, МХМ, ФЛ
23	$[Gd(Phen)(i-Bu_2PS_2)_3]$	ЭА, ИК, РФА, ФЛ
24**	$\operatorname{Sm}(2,2'-\operatorname{Bipy})(i-\operatorname{Bu}_2\operatorname{PS}_2)_3$	ЭА, ИК, МХМ, ФЛ
25	$[Sm(Phen)(i-Bu_2PS_2)_2(NO_3)]$	ЭА, ИК, РФА, МХМ, ФЛ
26	$[\text{Tb}(\text{Phen})(i\text{-}\text{Bu}_2\text{PS}_2)_2(\text{NO}_3)]$	ЭА, ИК, РФА, МХМ, ФЛ
27	$[Dy(Phen)(i-Bu_2PS_2)_2(NO_3)]$	ЭА, ИК, РСА, РФА, МХМ, ФЛ
28	$[Tm(Phen)(i-Bu_2PS_2)_2(NO_3)]$	ЭА, ИК, РФА, МХМ, ФЛ
29	[Sm(2,2'-Bipy)(<i>i</i> -Bu ₂ PS ₂) ₂ (NO ₃)]	ЭА, ИК, РФА, МХМ, ФЛ
30	[Tb(2,2'-Bipy)(<i>i</i> -Bu ₂ PS ₂) ₂ (NO ₃)]	ЭА, ИК, РСА, РФА, МХМ, ФЛ
31	[Dy(2,2'-Bipy)(<i>i</i> -Bu ₂ PS ₂) ₂ (NO ₃)]	ЭА, ИК, РФА, МХМ, ФЛ
32	$[Tm(2,2'-Bipy)(i-Bu_2PS_2)_2(NO_3)]$	ЭА, ИК, РСА, РФА, МХМ, ФЛ

33	Sm ₂ (4,4'-Bipy)(<i>i</i> -Bu ₂ PS ₂) ₆	ЭА, РФА, ИК, ФЛ
34	Eu ₂ (4,4'-Bipy)(<i>i</i> -Bu ₂ PS ₂) ₆	ЭА, РФА, ИК, ФЛ
35	Tb ₂ (4,4'-Bipy)(<i>i</i> -Bu ₂ PS ₂) ₆	ЭА, РФА, ИК, ФЛ
36	[Sm(6,6'-Biq)(i-Bu ₂ PS ₂) ₃] _n	ЭА, РСА, ИК, ФЛ
37	$Sm(Phen)((i-PrO)_2PS_2)_3$	ЭА, ИК, МХМ, ФЛ
38**	$[Sm(Phen)_2(NO_3)_3]$	ЭА, ИК, МХМ, ФЛ
39**	[Sm(2,2'-Bipy) ₂ (NO ₃) ₃]	ЭА, ИК, РСА, МХМ, ФЛ

*Сокращения: ЭА – элементный анализ, РФА – рентгенофазовый анализ, РСА – рентгеноструктурный анализ, ИК – инфракрасная спектроскопия, ФЛ – фотолюминесцентная спектроскопия, ПО – метод парофазной осмометрии (определение молекулярной массы в CHCl₃), ТГ – термогравиметрия, **МХМ** – магнетохимический метод.

**Ранее получены.

Синтез и строение комплексов Ln(III) (Ln = Sm, Eu, Gd, Tb, Dy, Tm), содержащих пирролидин- и бензилдитиокарбамат-ионы

Тетракис-комплекс **1** получен в результате реакции между стехиометрическими количествами реагентов по схеме (выход 25%):

 $4C_4H_8NCS_2NH_4 + Gd(NO_3)_3 \cdot 6H_2O \xrightarrow{EtOH-CH_2Cl_2} NH_4[Gd(C_4H_8NCS_2)_4] + 3NH_4NO_3 \downarrow + 6H_2O$

Для получения известных комплексов 2–7 разработана улучшенная методика, значительно отличающаяся от методики, описанной в [7]. Синтез комплексов 2–7 состоит из двух стадий. Первая стадия, предположительно, приводит к образованию *mpuc*-хелата Ln(C₄H₈NCS₂)_{3(solv)}, которой не выделяли из раствора:

 $Ln(NO_3)_3 \cdot nH_2O + 3C_4H_8NCS_2NH_4 \xrightarrow{i-PrOH-CH_2Cl_2} Ln(C_4H_8NCS_2)_{3(solv)} + 3NH_4NO_3\downarrow + nH_2O_3) + 3NH_4NO_3\downarrow + nH_2O_3$

После отфильтровывания NH_4NO_3 добавляли Phen H_2O , включение Phen в координационную сферу иона Ln^{3+} приводит к образованию устойчивых разнолигандных комплексов состава [$Ln(Phen)(C_4H_8NCS_2)_3$]:

 $Ln(C_4H_8NCS_2)_{3(solv)} + Phen \cdot H_2O \xrightarrow{i-PrOH-CH_2Cl_2} [Ln(Phen)(C_4H_8NCS_2)_3] \downarrow + H_2O$

Дитиокарбаматная соль была взята в небольшом избытке с целью увеличения выходов комплексов. Выходы комплексов 2–6 после перекристаллизации составляют 60–80%, выход комплекса Tm(III) 7 равен 40%.

При медленном испарении раствора комплекса **6** в CH_2Cl_2 выращены монокристаллы сольвата комплекса состава [Dy(Phen)($C_4H_8NCS_2$)₃]· $3CH_2Cl_2$ (**6a**). По данным PCA кристаллическая структура соединения **6a** состоит из кристаллографически независимых молекул 1 и 2 одноядерного комплекса [Dy(Phen)($C_4H_8NCS_2$)₃] и молекул CH₂Cl₂, расположенных в общих позициях. В координационную сферу атома Dy входят 2 атома N бидентатно-циклического лиганда Phen с расстояниями Dy–N 2.508(5) и 2.563(5)Å и 6 атомов S трёх бидентатно-циклических лигандов $C_4H_8NCS_2^-$ с интервалом расстояний Dy–S 2.779(2)–2.870(2)Å (рис. 1). Координационный полиэдр N₂S₆ атома Dy (KЧ = 8)

– искажённый тригональный додекаэдр. Наличие контактов С...С, N...С, слабых Нсвязей S...Н–С позволяет отнести соединение 6а к сольватам. Дифрактограммы комплексов 2–7 подобны, что позволяет судить о изоструктурности этих соединений. Определение молекулярной массы комплекса 2 показало, что это соединение в растворе CHCl₃ не диссоциирует.

Соединения **8–12** образуются в результате реакции ионов Ln^{3+} с $C_4H_8NCS_2^{-1}$ ионами и 2,2'-Віру в смеси CH_2Cl_2-i -PrOH при мольном соотношении 1:4:1 соответственно по схеме, аналогичной для комплексов **2–7**:

Рис. 1. Молекулярная структура [Dy(Phen)(C₄H₈NCS₂)₃] в соединении **ба**

$$\begin{array}{c} \text{Ln}(\text{NO}_3)_3 \cdot \text{nH}_2\text{O} + 3\text{C}_4\text{H}_8\text{NCS}_2\text{NH}_4 \xrightarrow{i-\text{PrOH-CH}_2\text{Cl}_2} \text{Ln}(\text{C}_4\text{H}_8\text{NCS}_2)_{3(\text{solv})} + 3\text{NH}_4\text{NO}_3\downarrow + \text{nH}_2\text{O} \\ \downarrow 2,2^2 \cdot \text{Bipy} \\ [\text{Ln}(2,2^2 \cdot \text{Bipy})(\text{C}_4\text{H}_8\text{NCS}_2)_3] \cdot 0.5\text{CH}_2\text{Cl}_2\downarrow \end{array}$$

Выход соединения **8** равен 60%, выходы остальных соединений составляют 30–40%. По данным ТГ, при нагревании соединения **8** заметная потеря массы начинается лишь около 110°C, что свидетельствует о достаточно прочном удерживании молекул CH_2Cl_2 в кристаллической структуре соединения **8**.

При медленном испарении раствора соединения **8** в CH₂Cl₂ выращены монокристаллы. По данным PCA кристаллическая структура **8** состоит из молекул одноядерного комплекса [Sm(2,2'-Bipy)(C₄H₈NCS₂)₃] и молекул CH₂Cl₂. В координационную сферу атома Sm входят 2 атома N бидентатно-циклического лиганда 2,2'-Bipy с расстояниями Sm–N, равными 2.591(2) и 2.608(2), а также 6 атомов S

Рис. 2. Молекулярная структура [Sm(2,2-Bipy)(C₄H₈NCS₂)₃] в соединении **8**

трёх лигандов C₄H₈NCS₂⁻ с интервалом расстояний Sm-S 2.851(1)-2.904(1)Å (рис. 2). Координационный полиэдр N₂S₆ атома Sm - искажённая тетрагональная антипризма. Индицирование дифрактограмм соединений 8-12 проводили по аналогии с теоретической дифрактограммой соединения 8, полученной из данных РСА. Экспериментальная и теоретическая дифрактограммы для соединения 8 совпали. По данным РФА дифрактограммы соединений 9-12 подобны дифрактограмме соединения 8. Получены кристаллографические характеристики для 8-12, которые свидетельствуют об изоструктурности этих комплексов.

Взаимодействие Ln(NO₃)₃·nH₂O (Ln = Sm, Eu, Tb), PhCH₂NHCS₂Na и Phen·H₂O (1:4:1) в смеси CH₂Cl₂-*i*-PrOH приводит к образованию разнолигандных комплексов **13–15**:

(Ln = Sm, Eu)

Выходы комплексов **13–15** (перекристаллизация не потребовалась) составили 80%. РФА показал, что комплексы **13–15** аморфны.

В результате взаимодействия ионов Ln^{3+} (Ln = Sm, Eu), $C_4H_8NCS_2^{-}$ и молекул Ph₃PO (мольное соотношение 1:4:1 для Ln = Sm, Eu и 1:4:2 для Ln = Tb) в смеси CH₂Cl₂-*i*-PrOH образуются комплексы Ln(Ph₃PO)(C₄H₈NCS₂)₃ (Ln = Sm (**16**), Eu (**17**), Tb(**18**)). Дальнейшее увеличение концентрации Ph₃PO (изменение мольного соотношения от 1:4:1 до 1:4:4 для Sm(III) и от 1:4:1 до 1:4:2 для Eu(III)) приводит к образованию комплексов состава Ln(Ph₃PO)₂(C₄H₈NCS₂)₃ (Ln = Sm (**19**), Eu (**20**)). В случае Tb(III) использование даже соотношения 1:4:4 не приводит к координации второй молекулы Ph₃PO.

С помощью РФА установлено, что соединения **16–18** имеют подобные дифрактограммы. Дифрактограммы комплексов **19** и **20** также подобны. В ИКспектрах комплексов **16–20** интенсивная полоса в области 1176–1180 см⁻¹ соответствует валентному колебанию связи Р=О в координированной молекуле Ph₃PO.

В ИК-спектрах соединений **6** и **8**, структуры которых определены методом PCA, идентифицированы полосы, отвечающие колебаниям групп CS₂ (~1010 см⁻¹) и С \sim N (1425–1965 см⁻¹) дитиокарбаматного лиганда. Наличие аналогичных полос в спектрах соединений **1–5**, **7**, **9–20** подтверждает наличие бидентатно-циклических лигандов C₄H₈NCS₂⁻ и PhCH₂NHCS₂⁻ в этих соединениях. В ИК-спектрах соединений **2–20** в области 1562–1626 см⁻¹ обнаружены полосы, отвечающие колебаниям v(C=C) и v(C=N) ароматических колец, входящих в состав Phen, 2,2'-Віру, Ph₃PO, PhCH₂NHCS₂⁻.

Комплексы, содержащие дитиокарбамат-ионы, хорошо растворимы в CH₂Cl₂, CHCl₃, бензоле. Все эти соединения устойчивы на воздухе длительное время, предложенные в данной работе методики синтеза не требуют инертной атмосферы и обезвоживания исходных реагентов и растворителей.

Синтез и строение комплексов Ln(III) (Ln = Sm, Eu, Gd, Tb, Dy, Tm), содержащих диизобутилдитиофосфинат- и диизопропилдитиофосфат-ионы

Тетракис-комплекс **21** синтезировали в две стадии. На первой стадии при взаимодействии стехиометрических количеств реагентов в EtOH, по-видимому, образуется *тетракис*-комплекс Na[Gd(*i*-Bu₂PS₂)4]_(solv):

$$GdCl_{3} \cdot 6H_{2}O + 4i \cdot Bu_{2}PS_{2}Na \cdot 3H_{2}O \xrightarrow{EtOH} Na[Gd(i \cdot Bu_{2}PS_{2})_{4}]_{(solv)} + 3NaCl\downarrow + 18H_{2}O$$

Выпавший осадок NaCl отфильтровывали. Данный *тетракис*-комплекс не удалось выделить из раствора в виде твёрдой фазы, поэтому к полученному раствору добавляли Et_4NCl , в результате обменной реакции образовался *тетракис*-комплекс $Et_4N[Gd(i-Bu_2PS_2)_4]$, который выделяли в твёрдом виде при испарении раствора после отфильтровывания осадка NaCl:

$$Na[Gd(i-Bu_2PS_2)_4] + Et_4NC1 \xrightarrow{EtOH} Et_4N[Gd(C_4H_8NCS_2)_4] + NaC1 \downarrow$$

Комплексы Sm(L)(*i*-Bu₂PS₂)₃ (L = Phen (**22**), 2,2'-Віру (**24**)) получали по методике, описанной в [8]. При смешивании растворов GdCl₃·6H₂O в EtOH и *i*-Bu₂PS₂Na·3H₂O в MeCN при мольном соотношении реагентов 1:3, последующем отфильтровывании осадка NaCl и добавлении раствора Phen·H₂O в MeCN образовался комплекс состава [Gd(Phen)(*i*-Bu₂PS₂)₃] (**23**). Схема синтеза комплексов **22–24**:

$$\begin{array}{c} LnX_3 \cdot nH_2O + 3i \text{-}Bu_2PS_2Na \cdot 3H_2O \rightarrow Ln(i\text{-}Bu_2PS_2)_{3(\text{solv})} + 3NaX \downarrow + (n+9)H_2O \\ \downarrow L \\ Ln(L)(i\text{-}Bu_2PS_2)_3 \end{array}$$

где $X = Cl^{-}(23)$, $NO_{3}^{-}(22, 24)$

При медленном испарении раствора комплекса **22** в MeCN выращены монокристаллы соединения [Sm(Phen)(*i*-Bu₂PS₂)₃]·MeCN (**22a**). Согласно PCA, основу кристаллической структуры соединения **22a** составляют молекулы одноядерного комплекса **22** и молекулы MeCN. Атом Sm координирует 2 атома N лиганда Phen с расстояниями Sm–N 2.611(2) и 2.640(2)Å и 6 атомов S трёх бидентатноциклических лигандов *i*-Bu₂PS₂⁻ с интервалом расстояний Sm–S 2.862(1)–

Рис. 3. Димерный ансамбль в кристаллической структуре 22а

2.938(1)Å. Наличие контактов между атомами С...С ароматических колец соседних молекул Phen и слабой водородной связи S...Н приводят к образованию димерного ансамбля (рис. 3). Молекулы MeCN слабо связаны с атомами молекул комплекса, что позволяет отнести **22a** к соединениям клатратного типа.

Определение молекулярной массы комплекса **22** показало, что это соединение в CHCl₃ является одноядерным, что согласуется с данными PCA для **22а** и свидетельствует об отсутствии диссоциации комплекса **22** в CHCl₃.

При взаимодействии Ln(NO₃)₃ nH₂O и *i*-Bu₂PS₂Na 3 H₂O в среде *i*-PrOH (**25**, **26**, **28–32**) или MeCN (**27**), последующем отфильтровывании NaNO₃ и добавлении L (L = Phen, 2,2'-Віру) образуются разнолигандные комплексы состава [Ln(L)(*i*-Bu₂PS₂)₂(NO₃)] (Ln = Sm, Tb, Dy, Tm; L = Phen, 2,2'-Віру):

Эти комплексы получены при небольшом избытке серосодержащего лиганда (мольные соотношения $Ln^{3+}:i-Bu_2PS_2^-$ равны 1:3 (25) и 1:4 (26–32)). Для получения комплекса 29 требуется избыток 2,2'-Bipy (Sm³⁺:2,2'-Bipy = 1:2). Выходы комплексов Sm(III), Tb(III) и Tm(III) находятся в интервале 50–85%. Выходы комплексов Dy(III) ниже и составляют 40%.

При медленном испарении раствора комплекса $[Dy(Phen)(i-Bu_2PS_2)_2(NO_3)]$ (27) в MeCN получены монокристаллы. По данным PCA основу кристаллической структуры 27 составляют молекулы одноядерного комплекса. Атом Dy координирует 2 атома N лиганда Phen на расстояниях Dy–N 2.476(6) и 2.531(6)Å, 4 атома S двух лигандов *i*-Bu₂PS₂⁻ на расстояниях Dy–S в интервале 2.767(2)–2.850(2)Å, а также 2 атома O бидентатно-циклического лиганда NO₃⁻ на расстояниях Dy–O 2.409(6) и 2.430(6) (рис. 4). Координационный полиэдр атома Dy – искажённый додекаэдр. Индицирование дифрактограмм комплексов 25–28 проводили по аналогии с теоретической дифрактограммой комплекса 27, рассчитанной из данных PCA. Установлено, что все исследован-

Рис. 4. Молекулярная структура комплекса [Dy(Phen)(*i*-Bu₂PS₂)₂(NO₃)]

ные образцы имеют подобные дифрактограммы. Для комплексов 25-28 проводилось уточнение параметров ячейки. Полученные элементарной кристаллографические характеристики для 25–28 говорят об изоструктурности этих соединений. Раствор комплекса 27 в CDCl₃ исследован с помошью метода ¹Н ЯМР при 293К. В растворе зарегистрированы молекулы комплекса 27. а также некоординированные ионы *i*-Bu₂PS₂⁻. По-видимому, комплекс 27 в CDCl₃ частично диссоциирует.

Получены 6 твёрдых фаз двойной системы [Eu(Phen)(*i*-Bu₂PS₂)₂(NO₃)]-[Tb(Phen)(*i*-Bu₂PS₂)₂(NO₃)] с мольными соотношениями Eu:Tb, равными 0.50:0.50, 0.80:0.20, 0.85:0.15, 0.90:0.10, 0.93:0.07, 0.95:0.05, по методике, описанной для синтеза индивидуальных комплексов [Ln(Phen)(*i*-Bu₂PS₂)₂(NO₃)], но без перекристаллизации полученных твёрдых фаз. По данным РФА все исследованные образцы изоструктурны комплексу 27. Дифрактограмма комплекса $[Eu(Phen)(i-Bu_2PS_2)_2(NO_3)]$, описанная в [3], подобна дифрактограмме комплекса $[Tb(Phen)(i-Bu_2PS_2)_2(NO_3)]$ (26), что говорит об изоструктурности этих соедине-По-видимому, твёрдые ний. фазы лвойной системы [Eu(Phen)(*i*-Bu₂PS₂)₂(NO₃)]-[Tb(Phen)(*i*-Bu₂PS₂)₂(NO₃)] представляют собой твёрлые растворы замешения.

При медленном испарении растворов комплексов 30 и 32 в С₆Н₆ выращены монокристаллы сольватов комплексов $[Tb(2,2'-Bipy)(i-Bu_2PS_2)_2(NO_3)] \cdot C_6H_6$ (30a) $[Tm(2,2'-Bipy)(i-Bu_2PS_2)_2(NO_3)] \cdot C_6H_6$ И (32а). По данным РСА кристаллические структуры соединений 30а и 32а состоят молекул одноядерных ИЗ комплексов [Ln(2,2'-Bipy)(*i*-Bu₂PS₂)₂(NO₃)] и некоординированных молекул бензола, которые размещаются между молекулами комплекса. Молекулярные структуры комплексов $[Ln(2,2'-Bipy)(i-Bu_2PS_2)_2(NO_3)]$ (Ln = Tm, Тb) практически одинаковы. Атомы Ln

Рис. 5. Молекулярная структура комплекса [Tb(2,2'-Bipy)(*i*-Bu₂PS₂)₂(NO₃)] в **30a**

координируют 2 атома N лиганда 2,2'-Віру (Тт–N 2.483(1) и 2.555 (1)Å, Тb–N 2.429(1) и 2.506(1)Å), 4 атома S двух лигандов *i*-Ви₂PS₂⁻ (Tт–S 2.825(1)–2.857(1)Å, Тb–S 2.784(1)–2.825(1)Å), а также 2 атома О лиганда NO₃⁻ (Тт–O 2.436(1) и 2.445(1)Å, Тb–O 2.386(1) и 2.399(1)Å) (рис. 5). Дифрактограммы комплексов **29–32** подобны.

Комплексы **33–35** состава $Ln_2(4,4'-Bipy)(i-Bu_2PS_2)_6$ (Ln = Sm, Eu, Tb) образуются при взаимодействии $Ln(NO_3)_3 \cdot 6H_2O$ и $i-Bu_2PS_2Na \cdot 3H_2O$ в i-PrOH, отфильтровывании осадка NaNO₃ и добавлении раствора 4,4 -Bipy в i-PrOH (мольное соотношение 1:4:1):

$$2\text{Ln}(\text{NO}_3)_3 \cdot \text{nH}_2\text{O} + 6i \cdot \text{Bu}_2\text{PS}_2\text{Na} \cdot 3\text{H}_2\text{O} \xrightarrow{i-\text{PrOH}} 2\text{Ln}(i \cdot \text{Bu}_2\text{PS}_2)_{3(\text{solv})} + 6\text{NaNO}_3\downarrow + 2(n+9)\text{H}_2\text{O} \xrightarrow{i-\text{PrOH}} 4,4^{'} \cdot \text{Bipy} \xrightarrow{I_2(4,4^{'}-\text{Bipy})(i \cdot \text{Bu}_2\text{PS}_2)_6\downarrow}$$

Выходы комплексов **33–35** составляют 10–20%. По-видимому, низкие выходы этих соединений связаны с высокой растворимостью комплексов в *i*-PrOH. Получить монокристаллы этих соединений не удалось. ИК-спектры комплексов свидетельствуют о наличии и координации лигандов 4,4'-Віру и *i*-Bu₂PS₂⁻. Можно предположить, что в этих соединениях фрагменты

Ln(*i*-Bu₂PS₂)₃ связаны через бидентатно-мостиковый лиганд 4,4'-Bipy, при этом атом Ln имеет координационный полиэдр NS₆.

При взаимодействии Sm(NO₃)₃·6H₂O, *i*-Bu₂PS₂Na·3H₂O и 6,6'-Biq в среде *i*-PrOH (мольное соотношение 1:4:1 соответственно) образуется комплекс **36**, имеющий по данным элементного анализа эмпирическую формулу Sm(6,6'-Biq)(*i*-Bu₂PS₂)₃:

$$\begin{array}{c} \mathrm{Sm}(\mathrm{NO}_3)_3 \cdot 6\mathrm{H}_2\mathrm{O} + 3i \cdot \mathrm{Bu}_2\mathrm{PS}_2\mathrm{Na} \cdot 3\mathrm{H}_2\mathrm{O} & \xrightarrow{i-\mathrm{PrOH}} & \mathrm{Sm}(i-\mathrm{Bu}_2\mathrm{PS}_2)_{3(\mathrm{solv})} + 3\mathrm{Na}\mathrm{NO}_3 \downarrow + 15\mathrm{H}_2\mathrm{O} \\ & \downarrow 6, 6' \cdot \mathrm{Biq} \\ & [\mathrm{Sm}(6, 6' \cdot \mathrm{Biq})(i-\mathrm{Bu}_2\mathrm{PS}_2)_3]_n \end{array}$$

По данным РСА соединение **36** является 1D-координационным полимером. Его кристаллическая структура построена из цепочек, состоящих из фрагментов Sm(*i*-Bu₂PS₂)₃ и молекул бидентатно-мостикового лиганда 6,6'-бихинолина (рис. 6). В координационную сферу атома Sm входят 6 атомов S трёх лигандов *i*-Bu₂PS₂⁻ на расстояниях Sm–S в интервале 2.884(1)–2.965(1)Å и 2 атома N лигандов 6,6'-Віq на расстояниях 2.699(4) и 2.731(4)Å. Координационный полиэдр N₂S₆ атома Sm – искажённая тетрагональная антипризма. Комплекс **36** является первым примером координационного полимера, содержащего 1,1-дитиолатные лиганды.

Рис. 6. Фрагмент полимерной цепочки в комплексе 36

В результате реакции $Sm(NO_3)_3 \cdot 6H_2O$ с (i-PrO)₂PS₂K и Phen $\cdot H_2O$ (мольное соотношение 1:5:1 соответственно) образуется комплекс Sm(Phen)((i-PrO)₂PS₂)₃ (**37**):

$$Sm(NO_3)_3 \cdot 6H_2O + 3(i-PrO)_2PS_2K \xrightarrow{i-PrOH} Sm((i-PrO)_2PS_2)_{3(solv)} + 3KNO_3 \downarrow + 6H_2O \downarrow Phen \cdot H_2O \\ Sm(Phen)((i-PrO)_2PS_2)_3 \downarrow + H_2O$$

Соединение 37 является первым примером разнолигандного комплекса Sm(III), имеющего в своем составе азотистый гетероцикл и диалкилдитиофосфат-ионы.

Комплексы, содержащие дитиофосфинат- и дитиофосфат-ионы растворимы в MeCN, *i*-PrOH, CH₂Cl₂, CHCl₃, бензоле. Все соединения были получены в обычных лабораторных условиях без обезвоживания исходных реагентов и растворителей. Синтезированные комплексы стабильны на воздухе длительное время.

Магнитные свойства комплексов Ln(III) (Ln = Sm, Eu, Tb, Dy, Tm), содержащих пирролидиндитиокарбамат- и диизобутилдитиофосфинат-ионы

Для комплексов [Ln(Phen)($C_4H_8NCS_2$)₃] (Ln = Sm (2), Eu (3), Tb (5), Dy (6), Tm (7)), $[Ln(2,2'-Bipy)(C_4H_8NCS_2)_3] \cdot 0.5CH_2Cl_2$ (Ln = Sm (8), Eu (9), Tb (10), Dy (11), Tm (12)) μ [Ln(Phen)(*i*-Bu₂PS₂)₂(NO₃)] (Ln = Sm (25), Tb (26), Dy (27), Tm (28)) исследованы магнитные свойства в интервале температур 2–300К. Экспериментальные зависимости эффективного магнитного момента (μ_{advb}) от температуры представлены на рис. 7. Эти соединения являются парамагнетиками при 300К. Высокотемпературные значения μ_{advb} для исследованных комплексов хорошо согласуются с теоретическими значениями для ионов Ln³⁺ либо типичными экспериментальными значениями $\mu_{\phi\phi\phi}$ для комплексов этих ионов. Зависимости $\mu_{adb}(T)$ для комплексов ионов Sm³⁺ и Eu³⁺ существенно отличаются от таковых для комплексов ионов Tb^{3+} , Dy^{3+} , Tm^{3+} . Для комплексов ионов Sm^{3+} и Eu^{3+} при понижении температуры μ_{add} постепенно уменьшается до 0.59 и 0.58 $\mu_{\rm B}$ соответственно при 5К, что обусловлено наличием близко расположенных по энергии к основному состоянию возбуждённых уровней, заселённость которых сильно меняется с температурой. В случае комплексов ионов Tb³⁺, Dy³⁺, Tm³⁺ возбуждённые состояния находятся гораздо выше по энергии и магнитные свойства определяются основным состоянием. Величины $\mu_{\phi\phi\phi}$ для комплексов этих ионов практически не меняются при понижении температуры до 50К и хорошо согласуются с теоретическими значениями для основного состояния (9.72 µ_в для Тb³⁺; 10.66 µ_в для Dy³⁺; 7.56 µ_в для Tm³⁺).

Таким образом, исследование магнитных свойств показало, что комплексообразование ионов Ln^{3+} с 1,1-дитиолатными лигандами, обладающими восстановительными свойствами, не сопровождается изменением степени окисления этих ионов.

Для комплексов 5, 11, 26–28 наблюдается переход в магнитноупорядоченное состояние при 2К, зависимость намагниченности (σ) образца от величины напряжённости внешнего магнитного поля (H) нелинейна (рис. 8) и не описывается функцией Бриллюэна. Петля гистерезиса отсутствует. Величины спонтанной намагниченности σ_0 при 2К, полученные из анализа зависимости $\sigma = \sigma_0 + \chi H$, составляют 24600, 27100, 21400, 25600 и 11000 Гс·см³/моль для комплексов 5, 11, 26–28 соответственно.

Рис. 8. Зависимость *о* комплексов **5**, **11**, **26–28** от величины *H* при 2К

Фотолюминесценция комплексов Ln(III) (Ln = Sm, Eu, Gd, Tb, Dy, Tm), содержащих 1,1-дитиолатные лиганды

Интенсивность (I) люминесценции комплексов Ln в большой мере определяется разницей между величинами энергий нижнего возбуждённого триплетного уровня лиганда (T_I) и испускающего уровня катиона лантанида.

Для определения энергий T_1 лигандов используют спектры люминесценции комплексов Gd(III), поскольку они имеют только полосы фосфоресценции, соответствующие переходам энергии с уровня T_1 лиганда на основной синглетный уровень лиганда (S_0). В результате анализа спектров фосфоресценции комплексов Et₄N[Gd(*i*-Bu₂PS₂)₄] (**21**) (рис. 9а), [Gd(Phen)(*i*-Bu₂PS₂)₃] (**23**) (рис. 9б) и [Gd(Phen)(C₄H₈NCS₂)₃] (**4**) (рис. 9в) в поликристаллической фазе при 77К определены энергии T_1 лигандов *i*-Bu₂PS₂⁻, Phen, C₄H₈NCS₂⁻, равные 22520, 21390, 18900±1500 см⁻¹ соответственно.

 $[Gd(Phen)(i-Bu_2PS_2)_3]$ (23) (6), $[Gd(Phen)(C_4H_8NCS_2)_3]$ (4)

При воздействии УФ-излучения на твёрдые комплексы Sm(III) наблюдается красное свечение. В спектрах ФЛ комплексов Sm(III) при 300К наблюдаются 4 полосы при 564 (переход ${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}$), 600 (${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$), 646 (${}^{4}G_{5/2} \rightarrow {}^{6}H_{9/2}$) и 706 нм (${}^{4}G_{5/2} \rightarrow {}^{6}H_{11/2}$).

Для рассмотрения на качественном уровне влияния состава комплексов на *I* ФЛ проведено сравнение спектров ФЛ соединений Sm(III), содержащих три, два *i*-Bu₂PS₂⁻-иона и не содержащих *i*-Bu₂PS₂⁻-ионы. Среди комплексов с Phen

Рис. 10. Спектры ФЛ комплексов **22**, **25**, **38**, содержащих 1,10-Phen ($\lambda_{gord} = 340$ нм) (**a**); спектры ФЛ комплексов 24, 29, 39, содержащих 2,2'-Віру ($\lambda_{6030} = 320$ нм) (б)

наибольшей I ФЛ обладает комплекс 22, в составе которого отсутствует ион NO_3^{-} (рис. 10а). В ряду комплексов с 2,2'-Віру первое место по $I \Phi Л$ занимает комплекс **39**, в котором отсутствуют i-Bu₂PS₂⁻-ионы (рис. 10б).

При сравнении спектров ФЛ комплек-

сов Sm(III) с Phen и различными 1,1-дитиолатными лигандами (C₄H₈NCS₂-(2), *i*-Bu₂PS₂⁻- (22), (*i*-PrO)₂PS₂⁻-ионами (37)) обнаружено, что І полос изменяется в следующем ряду: I(22) > I(37) > I(2), т.е. наибольшей І ФЛ обладает комплекс Sm(III), содержащий *i*-Bu₂PS₂-ионы (рис. 11). Очевидно, что переход от группы CS₂ (комплекс 2) к группе PS₂ (комплексы 22, 37) в составе 1.1-дитиолатных лигандов благоприятно влияет на I ФЛ. Вероятно, это связано с увеличением величины энергетической щели

между T_1 иона *i*-Bu₂PS₂⁻ и испускающего уровня иона Sm³⁺.

Для рассмотрения влияния на *I* ФЛ типа N-гетероциклов, входящих в состав комплексов Sm(III), проведено сравнение спектров ФЛ для групп комплексов: 1) $[Sm(Phen)(C_4H_8NCS_2)_3]$ (2) и $[Sm(2,2^2-Bipy)(C_4H_8NCS_2)_3] \cdot 0.5CH_2Cl_2$ (8) (рис. 12a); 2) Sm(L)(*i*-Bu₂PS₂)₃ (L = Phen (22), 2,2'-Bipy (24), 6,6'-Biq (36)) (рис. 12б); 3) $[Sm(L)(i-Bu_2PS_2)_2(NO_3)]$ (L = Phen (25), 2,2'-Bipy (29)) (рис. 12в). Обнаружено, что наибольшей І ФЛ во всех случаях обладают комплексы Sm(III), содержащие молекулу Phen. Интенсивность ФЛ координационного полимера полимера 36, содержащего молекулу 6,6'-Віq, примерно равна І ФЛ одноядерного комплекса 24, включающего молекулу 2,2'-Віру. По-видимому, энергетическая щель между низшим излучающим уровнем иона Sm³⁺ и триплетным уровнем Phen является более оптимальной по сравнению с соответствующей величиной между низшим излучающим уровнем иона Sm³⁺ и триплетным уровнем 2,2'-Віру и 6,6'-Віq, что приводит к более интенсивной $\Phi Л$ комплексов Sm³⁺, содержащих Phen.

Рис. 12. Спектры ФЛ комплексов **2** и **8** (λ_{возб} = 340 нм) (**a**); спектры ΦЛ комплексов **22**, **24**, **36** (λ_{возб} = 340 нм) (**b**); спектры ФЛ комплексов **25** (λ_{возб} = 350 нм) и **29** (λ_{возб} = 320 нм) (**b**)

При сравнении спектров ФЛ комплексов [Sm(Phen)($C_4H_8NCS_2$)₃] (2) и Sm(Phen)(PhCH₂NHCS₂)₃ (13) найдено, что замена гетероциклического фрагмента C_4H_8N на группу PhCH₂NH, имеющую бензольное ядро, приводит к понижению I ФЛ в комплексе 13 (рис. 13). Очевидно, что природа дитиокарбаматного лиганда существенно влияет на эффективность ФЛ разнолигандных комплексов Sm³⁺.

При воздействии на комплексы Tb(III) *Рис.* 13. Спектр ФЛ комплексов 2 и 13 УФ-излучения наблюдается зелёное свечение. ($\lambda_{accof} = 330 \text{ нм}$) В спектрах ФЛ комплексов Tb(III) при 300К имеются 4 полосы при 490 (${}^{5}D_{4} \rightarrow {}^{7}F_{6}$), 545 (${}^{5}D_{4} \rightarrow {}^{7}F_{5}$), 585 (${}^{5}D_{4} \rightarrow {}^{7}F_{4}$), 622 (${}^{5}D_{4} \rightarrow {}^{7}F_{3}$). Наибольшую $I \Phi Л$ в спектрах всех комплексов Tb(III) имеет «зелёная» полоса с $\lambda_{max} \sim 545$ нм.

С целью исследования влияния N-гетероциклов, входящих в состав комплексов Tb(III), на I ФЛ проведено сравнение спектров ФЛ соединений: 1) [Tb(L)(i-Bu₂PS₂)₂(NO₃)] (L = Phen (**26**), 2,2'-Bipy (**30**)); 2) [Tb(Phen)(C₄H₈NCS₂)₃] (**5**) и [Tb(2,2'-Bipy)(C₄H₈NCS₂)₃]·0.5CH₂Cl₂ (**10**) (рис. 14). В спектрах ФЛ дитиофосфинатных комплексов **26** и **30** I всех полос практически одинаковы (рис. 14а). Интенсивность полос в спектре ФЛ пирролидиндитиокарбаматного комплекса **5**, содержащего Phen, примерно в 10 раз больше I полос комплекса **10**, имеющего 2,2'-Bipy. Комплекс **18**, имеющий лиганд Ph₃PO, обладает более яркой ФЛ по сравнению с комплексами **5**, **10** содержащими N-гетероциклы (рис. 146).

Рис. 14. Спектры ФЛ комплексов 26 ($\lambda_{aoso} = 350$ нм), 30 ($\lambda_{aoso} = 320$ нм) (а); спектры ФЛ комплексов 5 ($\lambda_{aoso} = 330$ нм), 10 ($\lambda_{aoso} = 314$ нм), 18 ($\lambda_{aoso} = 315$ нм) (б)

Для оценки влияния природы дитиокарбаматного лиганда, входящего в состав комплекса, на I ФЛ, сравнены спектры комплексов $[Tb(Phen)(C_4H_8NCS_2)_3]$ (5)И $Tb(Phen)(PhCH_2NHCS_2)_3 \cdot CH_2Cl_2$ (15) (рис. 15). Комплекс 15, содержащий лиганды PhCH₂NHCS₂⁻, имеющие бензольное ядро, обладает более яркой ФЛ по сравнению комплексом 5 содержащим ионы C₄H₈NCS₂⁻ (рис. 15). Интересно, что в случае комплексов Sm(III) 2 и 13 аналогичного состава наблюдалась обратная ситуация.

При воздействии УФ-излучения на комплексы Dy(III) наблюдается белое свечение. В спектрах ФЛ комплексов иона Dy³⁺ **27** и **31** наблюдаются четыре полосы при 425 (${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$), 482 (${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$), 575 (${}^{4}F_{9/2} \rightarrow {}^{6}H_{11/2}$), 663 (${}^{4}F_{9/2} \rightarrow {}^{6}H_{9/2}$) нм (рис. 16). Наибольшей *I* в спектрах ФЛ соединений **27** и **31** обладает «белая» полоса с $\lambda_{max} = 575$ нм.

Интенсивность полос комплекса **27**, содержащего Phen, примерно в 2 раза меньше по сравнению с *I* полос комплекса **31** с 2,2'-Віру (рис. 16). В спектре ФЛ комплекса **6** имеется лишь полоса слабой *I* при 573 нм (переход ${}^{4}F_{9/2} \rightarrow {}^{6}H_{11/2}$). Комплекс [Dy(2,2'-Bipy)(C₄H₈NCS₂)₃]·0.5CH₂Cl₂ (**11**) ФЛ не обладает.

При действии УФ-излучения на комплексы Eu(III) **3** и **14**, содержащие Phen, наблюдается красное свечение. Спектры ФЛ комплексов **3** и **14** содержат две полосы с $\lambda_{max} = 593 ({}^{5}D_{0} \rightarrow {}^{7}F_{1})$ и 616 нм $({}^{5}D_{0} \rightarrow {}^{7}F_{2})$. При анализе влияния природы дитиокарбаматного лиганда на *I* ФЛ комплексов Eu(III) найдено, что комплекс **3**, имеющий фрагмент C₄H₈N, проявляет более интенсивную ФЛ по сравнению с комплексов **14**, содержащим фрагмент PhCH₂NH (рис. 17). Дитиокарбаматные комплексы Eu(III) **9** и **17**, имеющие 2,2'-Віру и Ph₃PO соответственно, не проявляют ФЛ.

При действии УФ-излучения комплексы Tm(III) **28** и **32** проявляют слабую белую ФЛ. В спектрах ФЛ комплексов **28** и **32** имеется полоса при 477 нм, соответствующая переходу ${}^{1}G_{4} \rightarrow {}^{3}H_{6}$ в ионе Tm³⁺ (рис. 18). Спектр ФЛ

комплекса **28** при 649 нм содержит полосу низкой *I*, соответствующую переходу ${}^{I}G_{4} \rightarrow {}^{3}F_{4}$ в ионе Tm³⁺.

При рассмотрении влияния природы Ln на $I \Phi Л$ найдено, что для комплексов [Ln(Phen)(C₄H₈NCS₂)₃] (Ln = Sm, Eu, Tb, Dy, Tm) интенсивность $\Phi Л$ убывает в ряду $I(Sm^{3+}) > I(Tb^{3+}) >> I(Eu^{3+}) ~ I(Dy^{3+})$, комплекс иона Tm^{3+} не обладает $\Phi Л$ (рис. 19). Аналогичный характер изменения $I \Phi Л$ наблюдается и для комплекс иона Sm^{3+} обладает наибольшей $I \Phi Л$, а комплексы ионов Eu^{3+} , Dy³⁺ и Tm^{3+} вообще не люминесцируют. Эта тенденция изменения $I \Phi Л$ в найденных рядах отличается от наблюдающейся в литературе для комплексов Ln(III) с N- и О-донорными лигандами, для которых лучшими эмиттерами являются соединения ионов Eu^{3+} , n

Рис. 19. Спектры ФЛ комплексов 2, 3, 5, 6 ($\lambda_{0000} = 330$ нм)

В случае других рядов дитиокарбаматных комплексов составов Ln(Phen)(PhCH₂NHCS₂)₃ (Ln = Sm, Eu, Tb) и Ln(Ph₃PO)(C₄H₈NCS₂)₃ (Ln = Sm, Tb), а также дитиофосфинатных комплексов [Ln(2,2'-Bipy)(*i*-Bu₂PS₂)₂(NO₃)] (Ln = Sm, Tb, Dy) интенсивность ФЛ уменьшается в ряду: $I(Tb^{3+}) > I(Sm^{3+}) > I(Eu^{3+})$.

Комплексы 33, 34, 35 состава $Ln_2(4,4'-Bipy)(i-Bu_2PS_2)_6$ (Ln = Sm, Eu, Tb) ФЛ не проявляют.

Исследована ΦЛ шести твёрдых фаз двойной системы [Eu(Phen)(*i*-Bu₂PS₂)₂(NO₃)]-[Tb(Phen)(*i*-Bu₂PS₂)₂(NO₃)] с различным относительным содержанием комплексов Eu(III) и Tb(III). Индивидуальный мелкокристаллический комплекс [Eu(Phen)(*i*-Bu₂PS₂)₂(NO₃)] ФЛ не обладает. В спектрах ФЛ твёрдых фаз системы помимо четырех полос, соответствующих энергетическим переходам в ионе Tb³⁺ при 490, 545, 585, 620 нм, появляется полоса при 615 нм, соответствующая переходу энергии в ионе $\text{Eu}^{3+}({}^{5}D_{0} \rightarrow {}^{7}F_{2})$ (рис. 20). По-видимому, в исследованной системе происходит переход энергии Тb(III)→Eu(III), что позволяет зарегистрировать Φ Л иона Eu³⁺.

Рис. 20. Спектры ФЛ комплекса [Eu(Phen)(*i*-Bu₂PS₂)₂(NO₃)] и твёрдых фаз двойной системы [Eu(Phen)(*i*-Bu₂PS₂)₂(NO₃)]–[Tb(Phen)(*i*-Bu₂PS₂)₂(NO₃)] (**Eu**_{0.50}**Tb**_{0.50}, **Eu**_{0.80}**Tb**_{0.20}, **Eu**_{0.85}**Tb**_{0.15}, **Eu**_{0.90}**Tb**_{0.10}, **Eu**_{0.93}**Tb**_{0.07} и **Eu**_{0.95}**Tb**_{0.05}) ($\lambda_{aoxo} = 330$ нм)

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

1. Разработаны методики синтеза 29 новых комплексов Ln(III) (Ln = Sm, Gd, Eu, Tb, Dy, Tm) с 1,1-дитиолатными лигандами. В число этих соединений входят *тетракис*-комплексы NH₄[Gd(C₄H₈NCS₂)₄] и Et₄N[Gd(*i*-Bu₂PS₂)₄], 19 разнолигандных комплексов с двумя типами лигандов: 1,1-дитиолатные лиганды (ионы C₄H₈NCS₂⁻, PhCH₂NHCS₂⁻, *i*-Bu₂PS₂⁻, (*i*-PrO)₂PS₂⁻) и N-гетероциклы (Phen, 2,2'-Bipy, 4,4'-Bipy, 6,6'-Biq) или Ph₃PO, а также 8 комплексов с тремя типами лигандов состава [Ln(L)(*i*-Bu₂PS₂)₂(NO₃)] (Ln = Sm, Tb, Dy, Tm; L = Phen, 2,2'-Bipy).

2. Методом РСА определены кристаллические структуры 8 соединений – представителей основных групп комплексов. Установлено, что все комплексы одноядерные, кроме 1D-полимера [Sm(6,6'-Biq)(*i*-Bu₂PS₂)₃]_n – первого примера координационного полимера для соединений Ln(III) с 1,1-дитиолатными лигандами. В комплексах с 1,1-дитиолатными лигандами атомы Ln имеют KЧ = 8. Лиганды *i*-Bu₂PS₂⁻, C₄H₈NCS₂⁻, NO₃⁻ и Phen, 2,2'-Bipy – бидентатно-циклические, 6,6'-бихинолин – бидентатно-мостиковый лиганд. На основе данных РСА, РФА и ИК-спектроскопии найдены 6 рядов изоструктурных комплексов.

3. Магнетохимическим методом показано, что при 300К комплексы являются парамагнетиками. Зависимости $\mu_{appp}(T)$ в интервале температур 2–300К характерны для комплексов ионов Ln³⁺. Установлено, что комплексы [Tb(Phen)(C₄H₈NCS₂)₃], [Dy(2,2'-Bipy)(C₄H₈NCS₂)₃]·0.5CH₂Cl₂, [Ln(Phen)(*i*-Bu₂PS₂)₂(NO₃)] (Ln = Tb, Dy, Tm) при 2К переходят в магнитно-упорядоченное состояние.

4. Из спектров фосфоресценции твёрдых фаз комплексов Gd(III) при 77К найдены величины энергий триплетных уровней ионов $C_4H_8NCS_2^-$ и *i*-Bu₂PS₂⁻, равные 18900 и 22520 см⁻¹ соответственно.

5. С помощью метода люминесцентной спектроскопии найдено, что большинство синтезированных комплексов в твёрдой фазе при 300К обладает ФЛ в видимой области спектра. Установлено: • замена группы CS₂ на PS₂ в комплексах Sm(Phen)A₃ (A = C₄H₈NCS₂⁻, (*i*-PrO)₂PS₂⁻, *i*-Bu₂PS₂⁻) приводит к возрастанию интенсивности Φ Л;

• в ряду комплексов $[Ln(L)(C_4H_8NCS_2)_3]$ (Ln = Sm, Eu, Tb, Dy, Tm; L = Phen, 2,2'-Віру) наибольшую интенсивность ФЛ проявляют комплексы Sm(III);

• в ряду соединений [Sm(Phen)(*i*-Bu₂PS₂)₃], [Sm(Phen)(*i*-Bu₂PS₂)₂(NO₃)], [Sm(Phen)₂(NO₃)₃] наибольшей интенсивностью $\Phi\Pi$ обладает комплекс, в котором отсутствует лиганд NO₃⁻;

• в комплексах [Ln(L)(*i*-Bu₂PS₂)₂(NO₃)] (L = Phen, 2,2'-Bipy) Phen проявляет бо́льшую сенсибилизирующую способность по отношению к Sm(III) и Tm(III), чем 2,2'-Bipy; для комплексов Dy(III) наиболее эффективным сенсибилизатором ФЛ является 2,2'-Bipy, а для соединений Tb(III) сенсибилизирующая способность Phen и 2,2'-Bipy примерно одинакова.

6. При исследовании твёрдых фаз системы [Eu(Phen)(*i*-Bu₂PS₂)₂(NO₃)]– [Tb(Phen)(*i*-Bu₂PS₂)₂(NO₃)] зарегистрирована флуоресценция иона Eu³⁺, которая в мелкокристаллическом комплексе [Eu(Phen)(*i*-Bu₂PS₂)₂(NO₃)] не наблюдается. Это свидетельствует о переносе энергии от Tb(III) к Eu(III).

Основное содержание диссертации изложено в следующих работах:

1. Кокина Т.Е., Клевцова Р.Ф., Усков Е.М., Глинская Л.А., Брылева Ю.А., Ларионов С.В. Кристаллическая структура соединения Sm(Phen)(*i*-Bu₂PS₂)₃·MeCN и фотолюминесцентные свойства Sm(L)(*i*-Bu₂PS₂)₃ (L = Phen, 2,2'-Bipy) // Журн. структур. химии. – 2010. – Т. 51, № 5. – С. 976-981.

2. Брылева Ю.А, Кокина Т.Е., Глинская Л.А., Усков Е.М. Рахманова М.И., Алексеев А.В., Ларионов С.В. Синтез, строение и фотолюминесценция разнолигандных комплексов Ln(L)(*изо*-Bu₂PS₂)₂(NO₃) (Ln = Sm, Tb, Dy; L= Phen, 2,2'-Bipy) // Коорд. химия. – 2012. – Т. 38, № 11. – С. 755-764.

3. Брылева Ю.А, Кокина Т.Е., Усков Е.М., Глинская Л.А., Антонова О.А., Ларионов С.В. Синтез и фотолюминесценция разнолигандных комплексов Sm(III), содержащих азотистые гетероциклы (Phen, 2,2'-Bipy), анионы C₄H₈NCS₂⁻, *i*-Bu₂PS₂⁻, (*i*-PrO)₂PS₂⁻, NO₃⁻. Кристаллическая структура соединения Sm(2,2'-Bipy)₂(NO₃)₃ // Коорд. химия. – 2013. – Т. 39, № 1. – С. 41-45.

4. Брылева Ю.А., Кокина Т. Е., Глинская Л.А., Рахманова М.И., Куратьева Н.В., Корольков И.В., Ларионов С.В. Синтез и фотолюминесценция комплексов Tm(L)(*изо*-Bu₂PS₂)₂(NO₃) (L = Phen, 2,2'-Bipy). Кристаллические структуры соединений [Ln(2,2'-Bipy)(*изо*-Bu₂PS₂)₂(NO₃)]·C₆H₆ (Ln = Tm, Tb) // Коорд. химия. – 2013. – Т. 39, № 10. – С. 628-635.

5. Брылева Ю.А., Глинская Л.А., Антонова О.В., Кокина Т.Е., Ларионов С.В. Синтез, структура и фотолюминесценция координационного полимера [Sm(biq)(*i*-Bu₂PS₂)₃]_n // Коорд. химия. – 2014. – Т. 40, № 3. – С. 184-187.

6. Брылева Ю.А., Глинская Л.А., Корольков И.В., Богомяков А.С., Рахманова М.И., Наумов Д.Ю., Кокина Т.Е., Ларионов С.В. Структура сольвата

Dy(Phen)(C₄H₈CS₂)₃·3CH₂Cl₂. Магнитные свойства и фотолюминесценция изоструктурных комплексов Ln(Phen)(C₄H₈NCS₂)₃ (Ln = Sm, Eu, Tb, Dy, Tm) // Журн. структур. химии. – 2014. – Т. 55, № 2. – С. 339-347.

7. Брылева Ю.А., Глинская Л.А., Корольков И.В., Богомяков А.С., Рахманова М.И., Наумов Д.Ю., Кокина Т.Е., Ларионов С.В. Синтез, строение, магнитные свойства и фотолюминесценция соединений Ln(2,2'-Bipy)(C₄H₈NCS₂)₃·0.5CH₂Cl₂ (Ln = Sm, Eu, Tb, Dy, Tm) // Коорд. химия. – 2014. – Т. 40, № 10. – С. 740-747.

Список цитируемой литературы

[1]. Dahiya K.K., Kaushik N.K. Studies on lanthanide(III) hexamethylendithiocarbamate complexes // Indian J. Chem. – 1988. – V. 27A. – P. 449-450.

[2]. Kobayashi T., Naruke H., Yamase T. Photoluminescence and molecular structure of tetrakis(N,N-dimethyldithiocarbamato)europate(III) // Chem. Lett. – 1997. – V. 26. N9.-P. 907-908.

[3]. Варанд В.Л, Усков Е.М., Корольков И.В., Ларионов С.В. Синтез и люминесцентные свойства комплексов EuL(*i*-Bu₂PS₂)₂(NO₃) (L = Phen, 2,2'-Bipy, 4,4'-Bipy) // Журн. общей химии. – 2009. – Т. 79, вып. 2. – С. 240-243.

[4]. Ларионов С.В., Варанд В.Л., Клевцова Р.Ф., Леонова Т.Г., Глинская Л.А., Усков Е.М. Синтез разнолигандного комплекса Nd(Phen){(*изо*-C₄H₉)₂PS₂)}₂(NO₃), кристаллическая структура [Nd(Phen){(*изо*-C₄H₉)₂PS₂)}₃] и люминесцентные свойства этих соединений // Коорд. химия. – 2008. – Т. 34, № 12. – С. 944-950.

[5]. Faustino W.M., Malta O.L., Teotonio E.E.S. Brito H.F., Simas A.M., De Sa G.F. Photoluminescence of europium(III) dithiocarbamate complexes: electronic structure, charge transfer and energy transfer // J. Phys. Chem. A. -2006. – V. 110. N 7. – P. 2510-2516.

[6]. Regulacio M.D., Publico M.H., Vasquez J.A., Myars P.N., Gentry S., Prushan M., Tam-Chang S.-W., Stoll S.L. Luminescence of Ln(III) dithiocarbamate complexes (Ln = La, Pr, Sm, Eu, Gd, Tb, Dy) // Inorg. Chem. -2008. - V. 47. N 5. - P. 1512-1523.

[7]. Chen S.P., Gao S.L., Yang X.W., Shi Q.Z. Application of rotate-bomb calorimeter for determining the standard molar enthalpy of formation of Ln(Pdc)₃(Phen) // Коорд. химия. – 2007. – Т. 33, № 3. – С. 231-238.

[8]. Варанд В.Л., Клевцова Р.Ф., Глинская Л.А., Ларионов С.В. Получение разнолигандных соединений LnL{ $(i-C_4H_9)_2PS_2$ }, (Ln = Pr, Nd, Sm, Eu; L = 1,10-фенантролин, 2,2'-бипиридил Кристаллические и молекулярные структуры соединений [Eu(Phen){ $(i-C_4H_9)_2PS_2$ }] и [Eu(2,2'-Bipy){ $(i-C_4H_9)_2PS_2$ }] // Коорд. химия. – 2000. – Т. 26, № 11. – С. 869-877.

БРЫЛЕВА Юлия Анатольевна

СИНТЕЗ, СТРОЕНИЕ, МАГНИТНЫЕ СВОЙСТВА И ФОТОЛЮМИНЕСЦЕНЦИЯ КОМПЛЕКСОВ Ln(III) (Ln = Sm, Gd, Eu, Tb, Dy, Tm), СОДЕРЖАЩИХ 1,1-ДИТИОЛАТНЫЕ ЛИГАНДЫ И N-ГЕТЕРОЦИКЛЫ ИЛИ Ph₃PO

Автореферат диссерт. на соискание ученой степени кандидата химических наук Изд. лиц. ИД № 04060 от 20.02.2001.

Подписано к печати и в свет 15.04.2015.
Формат 60×84/16. Бумага № 1. Гарнитура "Times New Roman"
Печать оперативная. Печ. л. 1,2. Учизд. л. 1,1. Тираж 120. Заказ № 76
Федеральное государственное бюджетное учреждение науки
Институт неорганической химии им. А.В. Николаева
Сибирского отделения Российской академии наук
Просп. Акад. Лаврентьева, 3, Новосибирск, 630090
inpoent i made traspentisesa, s, fiosoentonpen, ssoos s