В журнале International Journal of Molecular Sciences (ИФ 5,6) опубликована статья с участием сотрудников Института Пронина А.С., Позмоговой Т.Н., Воротникова Ю.А., Иванова А.А., Цыганковой А.Р., Гусельниковой Т.Я., Миронова Ю.В. и Шестопалова М.А.

“PEGylation of Terminal Ligands as a Route to Decrease the Toxicity of Radiocontrast Re6-Clusters", Pronin A.S., Pozmogova T.N., Vorotnikov Y.A., Vavilov G.D., Ivanov A.A., Yanshole V.V., Tsygankova A.R., Gusel’nikova T.Y., Mironov Y.V., Shestopalov M.A. // Int. J. Mol. Sci. 2023. V. 24. № 23. P. 16569. DOI: 10.3390/ijms242316569 Посмотреть статью 

В журнале Inorganic Chemistry (ИФ 4,6) опубликована статья с участием сотрудников Института Комлягиной В.И., Ромашева Н.Ф., Бакаева И.В., Абрамова П.А., Компанькова Н.Б., Рядуна А.А. и Гущина А.Л.

“Effects of Bis(imino)acenaphthene (Bian)-Derived Ligands on the Cytotoxicity, DNA Interactions, and Redox Activity of Palladium(II) Bipyridine Complexes", Komlyagina V.I., Romashev N.F., Besprozvannykh V.K., Arakelyan J., Wu C., Chubarov A.S., Bakaev I.V., Soh Y.K., Abramov P.A., Cheung K.L., Kompankov N.B., Ryadun A.A., Babak M.V., Gushchin A.L. // Inorganic Chemistry. 2023. V. 62. N 29. P. 11541-11553. DOI: 10.1021/acs.inorgchem.3c01172 Посмотреть статью 

"Для борьбы с вирусами и бактериями новосибирские ученые создали необычную ткань, она способна за считанные минуты убивать опасные организмы" – о своих разработках рассказали учёные Института неорганической химии им. А.В. Николаева СО РАН. 

ГТРК Вести Новосибирск, 14.12.2023

Наука в Сибири, 25.12.2023, №51. Стр. 4 "Сибирские ученые в СМИ: 2023 год". Итоги года. 

В сезон вирусов материал особо актуален. Маски и перчатки из него снижают вероятность заболеть. Ученые наделили привычный материал суперсилой. Хлопок пропитали раствором соединения молибдена, йода и еще нескольких органических веществ. Полный состав ученые держат в секрете.  

«Мы загружаем вещества в ампулу, запаиваем, и в нем образуется кластерный комплекс. Соединения показали себя как отличный фотоактивный компонент», ─ пояснила младший научный сотрудник Института неорганической химии СО РАН Екатерина Пронина. 

Ткань, способную защитить от бактерий и вирусов, протестировали. В считанные минуты она расправилась со стафилококком, кишечной палочкой, сальмонеллами, не оставила шансов вирусам гриппа и коронавируса. Для человека хлопковая защита с пропиткой абсолютно безопасна. Важная деталь: убивать вирусы и бактерии состав начинает под воздействием света солнца или лампы. 

«Синглетный кислород способен взаимодействовать практически со всеми молекулами и, если попадает на ткань с бактериями, вирусами или грибками, он окисляет поверхность и убивает их», ─ рассказывает заведующий лабораторией Института неорганической химии СО РАН Михаил Шестопалов. 

Шить из суперткани можно все, что угодно: брюки, футболки, халаты, маски, перчатки. Особого ухода она не требует, свои уникальные свойства не теряет даже при многократной стирке. Главное, чтобы температура была не выше 30 градусов. Сохранит ли противовирусный хлопок суперсилу после покраски, выясняют, а вот цена уже известна: если и дороже обычного, то ненамного. 

Автор: Анастасия Путинцева

Исследователи из Института неорганической химии им. А. В. Николаева создали хлопчатобумажные ткани для защиты поверхностей от патогенных микроорганизмов. Они могут самостоятельно стерилизоваться. Статья об этом опубликована в Journal of Environmental Chemical Engineering.

Наука в Сибири, 07.12.2023

«Мы взяли ткань и химически модифицировали ее фотоактивным компонентом. В его состав входили кластерные комплексы: несколько атомов молибдена, окруженные лигандами. Правильно подобранный лиганд настолько прочно связывается с тканью, что даже если постирать ее в стиральной машине, активный компонент не вымывается, стерилизующие свойства сохраняются», — рассказал главный научный сотрудник ИНХ СО РАН, заведующий лабораторией биоактивных неорганических соединений доктор химических наук Михаил Александрович Шестопалов.

Соединения, которые под действием светового облучения генерируют активные формы кислорода, называются фотосенсибилизаторы. Обычно у них довольно узкий рабочий диапазон длины волны. Свет должен быть какой-то конкретный, например только красный. У исследователей получилось охватить очень широкий диапазон света: от ультрафиолетового до зеленого, начала красного.

«Кластерный комплекс, который мы использовали, имеет несколько преимуществ. У него очень широкий спектр поглощения, в отличие от классических, например органических, фотосенсибилизаторов. Кроме того, это молибден, неорганика, он очень устойчив к фотовыгоранию. Органический фотосенсибилизатор под действием солнца часто выгорает», — отметил Михаил Шестопалов.

Антибактериальная активность кластерного комплекса молибдена со светом

Соединения молибдена относятся к классу фотосенсибилизаторов, потому что они не только светятся, но и вступают в реакцию с кислородом, переводя его в активную форму. Такой кислород называют синглетным. Когда он встречается с бактериями, грибками или вирусами, то окисляет оболочку микроорганизмов, и в итоге они погибают. Так и проявляется самостерилизация.

«Сначала мы загрузили все исходные вещества в кварцевую ампулу, создали в ней вакуум и запаяли. После поставили ее в печь с температурой 700—800 ℃, получился кластерный комплекс, который мы модифицировали. По сути, это раствор. Мы опустили туда хлопок, он окрасился полученным компонентом и приобрел особые свойства», — прокомментировала младший научный сотрудник ИНХ СО РАН кандидат химических наук Екатерина Валерьевна Пронина.

Разработкой новых самостерилизующихся материалов ученые занимаются с 2019 года, когда началась пандемия коронавируса. Использовать их можно для пошива медицинских халатов, масок, марлевых повязок. Они защищают человека от одного из самых частых путей распространения инфекции — контактного. Когда мы задеваем какую-либо зараженную поверхность, возбудитель переносится на слизистые оболочки (глаза, рот, нос и другие). Это небезопасно, так как некоторые патогенные микроорганизмы могут до нескольких месяцев находиться на различных поверхностях, сохраняя вирулентность. Известно, что вирус герпеса выживает на тканях не менее 3 часов, вирусы гриппа А и В остаются активными в течение 8—12 часов, а коронавирусы человека вирулентны до 9 дней.

«Этот проект был выполнен совместно с коллегами из Чехии, они исследовали генерацию синглетного кислорода. Им удалось подтвердить, что наш материал фотостабилен. Исследователи проводили несколько циклов: облучали ткань и смотрели интенсивность люминесценции. Оказалось, что даже при достаточно мощном облучении уровень люминесценции не падает. После наши коллеги-биологи проверили противовирусные и антибактериальные свойства. Они взяли биологический планшет, добавили туда вирус и накрыли лунки нашей модифицированной тканью, после чего облучили ее светом. В итоге значительное количество вирусов погибло. Так мы подтвердили эффективность нашей ткани», — сказала Екатерина Пронина.

Дальше ученые планируют работать над гидрофобностью материалов, чтобы они были водонепроницаемыми. Это поспособствует тому, что бактерии не смогут даже остаться на ткани, у них не будет возможности к ней присоединиться. Так самостерилизация станет еще эффективнее.

Полина Щербакова

Иллюстрация предоставлена исследователями


Материал на сайте РАН, 08.12.2023