

Вступительный экзамен в аспирантуру ИНХ СО РАН по специальной дисциплине «общая химия»

Июнь 2014 года, общая сумма – 1600 баллов

Задание 1.

- 1. Запишите полную электронную конфигурацию атома фосфора в основном состоянии. Чему равнаковалентность атома фосфора в основном состоянии, в возбужденных состояниях?
- 2. Предложите и объясните геометрическое строение следующих частиц: PCl_3 , PF_6 , $POCl_3$, PO_4^{3-} .
- 3. Постройте диаграмму молекулярных орбиталей для частицы NF. Какова кратность связи в этой частице? Является ли частица парамагнитной?
- 4. Рассчитайте энергию диссоциации иона PO⁺по наиболее выгодному пути, используя необходимые данные:

Частица	PO	P	0
Потенциал ионизации, эВ	10,11	10,48	13,62
Сродство к электрону, эВ	-1,78	-0,77	-1,47
Энергия	654	-	-
диссоциации, кДж/моль			

Задание 2.

- 1. Напишите размерности константы скорости для гомогенной реакции: а) нулевого порядка, б) первого порядка, в) второго порядка.
- 2. Объясните, как влияет катализатор на скорость и положение равновесия химической реакции. Дайте развернутый ответ
- 3. Схематически изобразите энергетический профиль экзотермической реакции в присутствии и отсутствии катализатора.
- 4. Определить энергию активации реакции первого порядка: $C_6H_5N_2^+ \rightarrow C_6H_5^+ + N_2$ (г.), если известно, что через 10 мин после начала реакции выделилось 0,1 лN₂ при 300 К и 0,2 лN₂ при 310 К. При полном протекании реакции выделилось 19,9 лN₂. Все объемы газов измерены при одинаковых условиях.

Задание 3.

- 1. Исходя из FeS, получите S, H_2S , $Na_2S_2O_3$, $NaHSO_4$, $Na_2S_2O_7$, не используя других серусодержащих соединений в качестве исходных. Напишите уравнения реакций и укажите условия их протекания. Приведите названия выделенных соединений по номенклатуре ИЮПАК.
- 2. Охарактеризуйте типы химической связи в твердомNaHSO₄.
- 3. Расположите в порядке возрастания pH 0.01~M растворы: Na_2SO_4 , Na_2SO_3 , H_2SO_4 , $NaHSO_4$ и объясните этот порядок.

Задание 4.

- 1. Рассчитайте растворимость AgCN: а) в воде; б) в буферном растворе с рH=3.
- 2. Рассчитайте pH раствора полученного при полном растворении 0,008 M твердого NaOH в 0,008 M растворе синильной кислоты (изменением объема при растворении пренебречь).

Справочные данные: $K_a(HCN) = 6.2 \times 10^{-10}$, $K_L(AgCN) = 7 \cdot 10^{-15}$.

- 3. Напишите реакции, которые будут протекать при смешивании водных растворов:
 - а) силиката натрия и хлорида аммония,
 - б) сульфида натрия и нитрата хрома (III),
 - в) карбоната натрия и хлорида алюминия.

<u>Задание 5.</u>

1. Что такое фазовый переход? Какие типы фазовых переходов Вам известны? Приведите по одному примеру.

- 2. В герметичном помещении объёмом 100 м³ разбили термометр, содержащий 2 г ртути. Определите, какое давление паров ртути установится в помещении при 25°С?
- 3. Какое давление паров ртути установится в этом помещении после того, как разбили второй такой же термометр?
- 4. Предложите способ химической демеркуризации помещения (уравнения реакций).

Справочные данные: $\Delta H_{298}^{\circ}_{\text{исп}}(\text{Hg}) = 61 \text{ кДж/моль}, \Delta S_{298}^{\circ}_{\text{исп}}(\text{Hg}) = 99 \text{ Дж/(моль·К)}.$

Задание 6.

Запишите уравнения реакций, расставьте коэффициенты и укажите (там где необходимо) условия их проведения.

1. $Na \rightarrow Na_2O_2$

2. $EuSO_4 \rightarrow Eu(OH)_3$

3. $I_2 \rightarrow HIO_3$

4. $Co(OH)_3 \rightarrow CoSO_4$

5. $Hg_2(NO_3)_2 \rightarrow Hg(NO_3)_2$

6. $H_3BO_3 \rightarrow NaBO_2$

7. $KMnO_4 + H_2SO_4 + FeSO_4$

8. $NH_3 \rightarrow N_2H_4$

9. $Tl \rightarrow Tl_2SO_4$

10. $CrCl_2 \rightarrow K_2CrO_4$

Задание7.

- 1. Какие степени окисления Вам известны для элементов Cu, Ag, Au?
 - а) Приведите примеры соединений для каждой степени окисления каждого элемента.
 - б) предложите способы получения из металлов соединений Cu, Ag, Au в низшей положительной степени окисления.
 - в) Приведите примеры реакций, характеризующих окислительные свойства соединений Cu, Ag, Au в высших степенях окисления.
- **2.** Исходя из величин стандартных потенциалов E^{o} (Au^{3+}/Au) = 1,498 BE^{0} ($AuCl_{4}^{-}/Au$) = 1,000 B, $E^{0}(AuBr_{4}^{-}/Au)$ = 0,854 B рассчитать полные константы образования тетрахлоро- и тетрабромоаурат-ионов.
- **3.** Предложите химический способ разделить смесь порошков Cu, Ag, Au, выделив каждый металл в чистом виде. Напишите соответствующие реакции.

Задание 8.

- **1.** Дайте определения понятиям: *координационное соединение*, *координационное число*, *дентатность*, *лиганд*.
- **2.** Предложите способ получения безводного хлорида кобальта(II). В каком координационном окружении находится ион кобальта(II) в этом соединении?
- **3.** Безводный хлорид кобальта(II) имеет синюю окраску. Известны кристаллогидраты хлорида кобальта(II), содержащие различное количество молекул воды на формульную единицу, окраска которых изменяется в следующем ряду:

CoCl ₂ ·H ₂ O	сине-фиолетовый
CoCl ₂ ·2H ₂ O	фиолетовый
CoCl ₂ ·4H ₂ O	тёмно-красный
CoCl ₂ ·6H ₂ O	розовый

Предложите координационные формулы этих соединений и объясните изменение окраски в свете теории кристаллического поля и поля лигандов.

4. При добавлении в водный раствор соли кобальта(II) концентрированной соляной кислоты цвет раствора изменяется с розового на синий. В каких химических формах будут присутствовать ионы кобальта(II) в полученном растворе? Напишите уравнение реакции для этого процесса.

Желаем удачи!

Справочные данные: $R = 8,31 \; (Дж \cdot K^{-1} \cdot моль^{-1})$ $F = 96 \; 485 \; (Кл \cdot моль^{-1})$ $1 \; 9B = 1,602 \cdot 10^{-19} \; Дж,$ $N_a = 6.02 \cdot 10^{23} \; \text{моль}^{-1}$