АБРАМОВ Павел Александрович

ПОЛИЯДЕРНЫЕ ОКСОКОМПЛЕКСЫ МЕТАЛЛОВ 5 и 6 ГРУПП: СИНТЕЗ, РЕАКЦИОННАЯ СПОСОБНОСТЬ И НОВЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ В РАСТВОРАХ

02.00.01 - неорганическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени доктора химических наук

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук (ИНХ СО РАН)

Официальные оппоненты:

доктор химических наук, заместитель директора Пискунов Александр Владимирович ФГБУН Институт металлоорганической химии им. Г.А. Разуваева РАН, г. Нижний Новгород

доктор химических наук, заведующий лабораторией Приходченко Пётр Валерьевич ФГБУН Институт общей и неорганической химии им. Н.С. Курнакова РАН, г. Москва

доктор химических наук, профессор РАН, профессор кафедры физической химии Лысенко Константин Александрович ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова», г. Москва

Ведущая организация:

ФГБУН Институт катализа им. Г.К. Борескова СО РАН, г. Новосибирск

Защита состоится «16» октября 2019 г. в 12.00 на заседании диссертационного совета Д 003.051.01 на базе ИНХ СО РАН по адресу: просп. Акад. Лаврентьева, 3, Новосибирск, 630090

С диссертацией можно ознакомиться в библиотеке ИНХ СО РАН и на сайте http://www.niic.nsc.ru/institute/dissertatsionnyj-sovet/

Автореферат разослан «17» июня 2019 г.

Ученый секретарь диссертационного совета, доктор физико-математических наук

В.А. Надолинный

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Полиоксометаллаты (ПОМ) представляют собой уникальный класс металл-оксидных полиядерных комплексов. Благодаря исключительному структурному разнообразию и богатой гамме физико-химических свойств, таких как редокс- и фотоактивность, молекулярный магнетизм, активность в гомо- и гетерогенном катализе, биологическая активность и т.д. эти объекты продолжают активно исследоваться. Полиоксометаллаты легко подвергаются перестройке путём изменения рН раствора, катионного фона, состава растворителя или добавления темплатного агента. Они существуют в широком диапазоне рН, что делает их подходящими объектами для создания хорошо структурированных, иерархически организованных гибридных комплексов. Реакции самосборки – селективного образования ПОМ со сложной структурой из простейших исходных реагентов ("строительных блоков") играют важнейшую роль в химии ПОМ и часто управляются только изменением рН реакционного раствора. Сочетание как простых стартовых реагентов (например, молибдата или вольфрама натрия), так и предорганизованных строительных блоков (лакунарных полиоксокомплексов) позволяет получить комплексы самого разнообразного состава и строения.

ПОМ могут выступать в роли полидентатных лигандов и координировать в этом качестве практически все элементы периодической системы. Среди множества соединений можно выделить группу комплексов ПОМ с благородными металлами, которые привлекают особенный интерес благодаря их каталитической активности. Такие комплексы, зачастую, демонстрируют синергетический эффект, выступая в качестве высокоэффективных катализаторов широкого спектра реакций. Данная тематика представлена в работах научных групп Корца (Германия), Хилла (США), Кронина (Великобритания), Пруст (Франция), Бонкио (Италия). Среди широкого спектра химических превращений, в которых ПОМ выступают в качестве катализатора, особенно важна, с точки зрения водородной энергетики, реакция разложения воды до водорода и кислорода.

За последние десятилетия в химии ПОМ вольфрама, молибдена и ванадия достигнут огромный прогресс, благодаря выдающимся работам М. Поупа, А. Мюллера, В. Клемперера, Р. Финке, А Тэзе и др. В химии полиниобатов, которая долгое время оставалась в тени химии оксокомплексов ванадия, молибдена и вольфрама и фактически сводилась к изучению гексаниобат-аниона $[{\rm Nb}_6{\rm O}_{19}]^{8-}$, М. Найман (США) относительно недавно были разработаны подходы к синтезу новых полиниобатов различного состава и строения, открывшие совсем новую перспективу для этой области химии. Они основаны на структурной перестройке гексаниобата в сольвентотермальных условиях. В 2010 г. Л. Кронин (Великобритания) и сотр. показали, что при длительном выдерживании раствора $K_7[H{\rm Nb}_6{\rm O}_{19}]$ при 200°С образуется целый набор новых изополиниобатов. Главной особенностью строения выделенных им крупных полиниобатов является наличие пентагонального фрагмента $\{Nb{\rm Nb}_5\}$, что не является редкостью для химии молибдена и вольфрама, но в химии полиниобатов было обнаружено впервые. Смешанные

изополиниобатовольфраматы были кратко описаны в 1976 году М. Даббаби, а гетерополисоединения были получены только в 1984 году. При этом источником полиоксониобатных фрагментов был пероксокомплекс ниобия $[\mathrm{Nb}(\mathrm{O}_2)_4]^{3-}$, возникающий *in situ* при действии пероксида водорода на $[\mathrm{Nb}_6\mathrm{O}_{19}]^{8-}$. Этот метод требует очень тщательной дозировки $\mathrm{H}_2\mathrm{O}_2$ и дальнейшей её нейтрализации введением в реакционный раствор сульфита натрия.

Одной из главных особенностей химии ПОМ в целом является их относительно высокая лабильность в растворах - такие растворы можно рассматривать как своего рода "виртуальные" библиотеки ПОМ и их фрагментов ("строительных блоков"). Анионы Линдквиста $[M_6O_{19}]^{8-}$ (M = Nb, Ta) обладают самым большим значением плотности заряда (отношение заряда аниона к общему числу неводородных атомов) для известных гомо- и гетерометаллических ПОМ ниобия и тантала. Это приводит к протонированию и ассоциации этих анионов в растворе. Подобным образом должны себя вести и другие ПОМ с высоким отрицательным зарядом. Кроме того, в водном растворе могут наблюдаться другие сложные процессы, связанные с перестройкой остова ПОМ. Поэтому доказательство идентичности состава и строения выделяемого в твёрдую фазу продукта и присутствие его в растворе в виде соответствующей химической формы является одним из принципиальных этапов идентификации новых ПОМ. К моменту начала наших исследований в литературе практически отсутствовали работы, посвященные изучению ПОМ сепарационными методами (основанными на разделении компонентов по заряду, размеру, плотности и т. д.), по сравнению с более распространёнными, но не всегда информативными, спектроскопическими методиками.

Таким образом, в рамках данной работы предстояло провести масштабные исследования по изучению химии ПОМ ниобия и тантала, переживающей своё второе рождение после 2000 года. Другим многообещающим направлением было изучение комплексов ПОМ, как на основе ниобатов, так и более традиционных вольфраматов, с благородными металлами. Это представляло собой непростую задачу как с точки зрения синтеза, так и характеризации, а ряд опубликованных до наших работ результатов вызывал сомнения и даже достаточно жаркую полемику на страницах ведущих химических журналов.

Степень разработанности темы. В диссертации был внесен существенный вклад в решение разных проблем, стоящих перед исследователями в области химии ПОМ и проистекающих из описанного выше положения вещей. Конкретно, до наших работ отсутствовали или были представлены лишь фрагментарно данные о:

- трансформации гексаниобат-аниона в водных растворах при нагревании в присутствии источников гетерометаллов (за исключением кремния и германия);
- синтезе и поведении в растворе полиоксониобатов и полиоксотанталатов, содержащих координированные металлоорганические фрагменты ("гибридные" ПОМ);
- систематически разработанных методах синтеза, строении и поведении в растворе комплексов ПОМ с большинством благородных металлов;

- поведении лабильных ПОМ в растворе, полученные с помощью комбинации ВЭЖХ и ИСП-АЭС;
- рациональных подходах к синтезу смешанных W/Nb ПОМ и их поведении в растворе;
- возможности координации переходных и постпереходных металлов к нелакунарным ("пленарным") полиоксоанионам со структурой типа Кеггина и Доусона;
- приёмах контроля реакций самосборки, основанных на изменении рН среды и топологии строительных блоков, данных об использовании ПОМ и октаэдрических кластеров для направленной сборки супрамолекулярных систем, информация о строении и поведении в растворе полученных комплексов.

Цель работы: Разработка методов синтеза новых полиоксометаллатов для металлов 5-ой (ниобия и тантала) и 6-ой групп (молибдена и вольфрама), изучение координации гетероатомов (Ru, Rh, Ir, Pt, Au) к ПОМ, их реакционной способности и физико-химических свойств, а также анализ поведения ПОМ в растворах.

Для достижения этой цели поставлены следующие задачи:

- продемонстрировать общие черты и специфику поведения гексаниобатов и гексатанталатов в качестве лигандов;
- выявить структурные перестройки гексаниобатов в процессе термолиза в присутствии гетероэлементов;
- разработать методы синтеза комплексов ПОМ 5 и 6 групп с благородными металлами;
- применить сепарационные методы разделения и идентификации полиоксоанионов в водных растворах в широком интервале рН; изучить процессы самосборки смешанных ПОМ и их трансформации с помощью этих методов;
- установить строение полученных комплексов с помощью рентгеноструктурного анализа;
- изучить реакционную способность и поведение в растворах полученных комплексов с помощью ЯМР-спектроскопии, масс-спектрометрии, капиллярного электрофореза.

Научная новизна. Развита синтетическая химия гексаниобатов и гексатанталатов и предложены оригинальные, эффективные методы синтеза ключевых соединений. Установлено, что взаимодействие гексаниобата и теллуровой кислоты в водном растворе приводит к селективному введению только одного атома ниобия в структуру шестиядерного аниона. При кратковременной высокотемпературной активации (220° C, 24 часа) $[Nb_6O_{19}]^{8^{-}}$ в присутствии дифенилсиландиола, как источника кремния, происходит образование лакунарного аниона $[Si_4Nb_{16}O_{56}]^{16^{-}}$ (кинетический контроль), а длительное нагревание (4 суток) приводит к конверсии структуры в анион типа Кеггина $[SiNb_{12}O_{40}]^{16^{-}}$ (термодинамический контроль). Высокотемпературное воздействие на $[Nb_6O_{19}]^{8^{-}}$ в присутствии ванадат-аниона приводит к разным продуктам в зависимости от типа катиона. При использовании натриевой соли гексанио-

бата образуется "двухшапочный" анион типа Кеггина $[VNb_{12}O_{40}\{NbO(CO_3)\}_2]^{13-}$ с двумя дополнительными вершинами $\{NbO(CO_3)\}^+$. В случае калиевой соли происходит образование 24-ядерного комплекса $[K@V_xNb_{24}O_{76}]^{n-}$, тетраэдрические пустоты которого статистически заняты катионами V^{5+} .

Реализована координация катионных металлоорганических фрагментов $\{(C_6H_6)Ru\}^{2+}$ и $\{Cp*M\}^{2+}$ (M = Rh, Ir) к гексаниобатам и гексатанталатам. Впервые в химии ПОМ для наблюдения за поведением таких гибридных комплексов в растворе были применены ¹H DOSY ЯМР и капиллярный электрофорез. В результате изучения комплексов с мольным отношением металлоорганический фрагмент/гексаметаллат 1:1 открыта димеризация гексаметаллатных фрагментов, что никогда не наблюдалось для свободных гексаметаллатов. Обнаружена уникальная способность гибридных комплексов к растворению исключительно в метаноле. Установлено, что поведение гибридных анионов в растворе зависит от величины отрицательного заряда ПОМ. Комплексы 2:1 на основе чистых гексаметаллатов (заряд 8-) не проявляют склонности к потере металлоорганического фрагмента в водном растворе или к изомеризации. Комплексы того же состава на основе теллуропентаниобата (заряд 7–) оказываются весьма лабильными. Для более крупного аниона со структурой Кеггина даже высокий отрицательный заряд аниона (15-) не способствует уменьшению лабильности координированных арен-рутениевых фрагментов в растворе.

Впервые применен комбинированный метод анализа сложных смесей ПОМ как в кислых, так и в щелочных средах на основе ВЭЖХ и ИСП-АЭС. Этим методом удалось проследить ход реакции замещения атомов ниобия на вольфрам при взаимодействии гексаниобата калия и вольфрамовой кислоты. При использовании теллуропентаниобата наблюдалось селективное замещение атома теллура на атом вольфрама. Это является первым примером реакций замещения одного металла на другой в структуре шестиядерного аниона типа Линдквиста. Используя комбинированный метод анализа, удалось доказать существование такого класса соединений как фосфониобомолибдаты. Установлено поведение широкого набора комплексов на основе ПОМ в водных растворах.

Впервые осуществлена координация Pt^{IV} к гексаниобат-аниону, охарактеризованы два полиниобата платины. Получены новые комплексы родия и рутения с ПОМ. Впервые осуществлена прямая координация золота к ПОМ в комплексе $[\alpha\text{-PW}_{11}O_{39}(uuc\text{-Au}(CH_3)_2)_2]^{5-}$. Показано, что комплексы $Cs_2K_{10}[Nb_6O_{19}\{Pt(OH)_2\}]_2\cdot 13H_2O$ и $Na_{12}[(Rh_4(\mu_3\text{-O})_2(H_2O)_2)(H_2W_9O_{33})_2]\cdot 38H_2O$ проявляют электрокаталитическую активность в процессе окисления воды. Этот эффект напрямую связан с присутствием гидроксогруппы или молекулы воды в координационной сфере благородного металла.

Впервые подробно изучена система WO_4^{2-} / VO_3^- / SeO_3^{2-} методами масс-спектрометрии (ESI-MS), капиллярного электрофореза, электронной спектроскопии поглощения (ЭСП) и ЯМР в кислых водных растворах. Установлена исключительно сложная динамика образования и эволюции смешанных ПОМ

в этих условиях, которая включает в себя самосборку трилакунарных фрагментов $[\mathrm{SeW}_{9-x}\mathrm{V}_x\mathrm{O}_{33}]^{\mathrm{n-}}$ с высоким содержанием ванадия $(x \geq 5)$. Их эволюция в растворе включает образование анионов сэндвичевого типа путём координации $\{\mathrm{WO}\}^{4+}$ и $\{\mathrm{VO}\}^{3+}$ групп к двум фрагментам $[\mathrm{SeW}_{9-x}\mathrm{V}_x\mathrm{O}_{33}]^{\mathrm{n-}}$, которые постепенно переходят в смесь анионов типа Линдквиста $[\mathrm{W}_5\mathrm{VO}_{19}]^{3-}$ и $[\mathrm{W}_4\mathrm{V}_2\mathrm{O}_{19}]^{4-}$.

Оксалатный комплекс (NH₄)[NbO(C₂O₄)₂(H₂O)₂]·3H₂O (**Nb-Ox**) предложен в качестве удобного источника ниобия для синтеза смешанных ПОМ. На его основе разработаны методы синтеза ниобийзамещённых анионов типа Кеггина [XW₁₁NbO₄₀]ⁿ⁻ (X = P, Ge, B). Реакции Nb-Ox с [α -B-XW₉O₃₃]⁹⁻ (X = As, Sb) приводят к образованию анионов сэндвичевого типа [α -B-AsW₉O₃₃)₂(NbO)₃(H₂O)]⁹⁻ и [(α -B-AsW₉O₃₃)₂(NbO)₂(H₂O)]¹²⁻ для X = As. В случае X = Sb был выделен и охарактеризован анион [(α -B-SbW₉O₃₃)₂(Nb(C₂O₄))₂]¹²⁻ с двумя {Nb(C₂O₄)}³⁺ фрагментами. Включение Nb в анионный макроциклический кавитанд [P₈W₄₈O₁₈₄]⁴⁰⁻ приводит к образованию смешанных W/Nb комплексов. Преимущественно происходит включение трёх и четырёх атомов Nb(V).

Изучена фотохимия комплекса (bpyH₂)(bpyH)[NbO(C₂O₄)₃]·2H₂O. Предложен механизм процесса, включающий: поглощение света bpyH₂²⁺, перенос энергии на [NbO(C₂O₄)₃]³⁻, перенос электрона от возбужденного аниона обратно на катион, образование синего bpyH₂⁺ катион-радикала. Оксалатный комплекс ниобия играет ключевую роль в этом механизме, поскольку (bpyH₂)C₂O₄ не является фотоактивным.

Самосборка ПОМ на основе селеновольфраматных, изополивольфраматных и кластерных фрагментов $\{Mo_2O_2S_2\}^{2+}$ приводит либо к $[(\gamma-Se_2W_{14}O_{52})_3(Mo_2O_2(\mu-S)_2(H_2O)_2)_6]^{2+}$ (рН 3,5), либо к $[(\gamma-Se_2W_{14}O_{52})_4(WO_3(H_2O))_8(W_2O_5)_2(W_4O_{13})_2(Mo_2O_2(\mu-S)_2(H_2O)_2)_4(Mo_2O_2(\mu-S)_2(SeO_3))_4]^{40-}$ (рН 2), в зависимости от рН реакционной среды.

Получены уникальные примеры спонтанного образования иерархически организованных наноразмерных супрамолекулярных комплексов на основе ПОМ 6 группы, кластеров 5 и 6 групп и молекул γ -циклодекстрина (γ -CD). Впервые создана трёхкомпонентная супрамолекулярная система на основе межмолекулярного распознавания на уровне индивидуальных компонентов в системах: $[P_2W_{18}O_{62}]^{6-}/\gamma$ -CD и $[Ta_6Br_{12}(H_2O)_6]^{2+}/\gamma$ -CD, которая реализуется в структуре комплекса $K_2\{[Ta_6Br_{12}(H_2O)_6]@(\gamma$ -CD) $_2\}[H_2P_2W_{18}O_{62}]\cdot 32,5H_2O$. Таким образом, сродство октаэдрических кластеров и γ -циклодекстрина можно использовать для построения разнообразных сложноорганизованных систем и управлять с его помощью их люминесцентными, редокс или биологическими свойствами.

Изучена способность классических анионов типа Кеггина и Доусона координировать Zn^{2+} , Co^{2+} , Ni^{2+} , Pb^{2+} , Bi^{3+} в органических растворителях. В случае Pb^{2+} и Bi^{3+} показано образование как координационных полимеров, так и островных структур. Различие в заряде $[PW_{12}O_{40}]^{3-}$ и $[SiW_{12}O_{40}]^{4-}$ приво-

дит к заметной разнице в координации Bi^{3+} : силиковольфрамат способен координировать Bi^{3+} , тогда как фосфовольфрамат предпочитает образование ионных пар с изолированными катионами $[Bi(DMF)_8]^{3+}$. Прямая координация Pb^{2+} к $(Bu_4N)_4[PW_{11}NbO_{40}]$ обнаружена в кристаллической структуре $[Pb_2(\mu_2-DMF)_3(DMF)_8][PW_{11}NbO_{40}]$ ОМF. Ионы 3d-металлов $(Zn^{2+},\ Co^{2+},\ Ni^{2+})$ более склонны к взаимодействию с молекулами растворителя, чем с ΠOM , что приводит к образованию двойных комплексных солей сольватированных катионов с $[SiW_{12}O_{40}]^{4-}$, $[PW_{12}O_{40}]^{3-}$, $[PW_{11}NbO_{40}]^{4-}$.

Методология работы. Работа носит экспериментальный характер и относится к области препаративной неорганической химии. Основной частью работы является получение и выделение новых координационных соединений на основе ПОМ, выращивание их монокристаллов для рентгеноструктурного анализа (РСА) и приготовление образцов для аналитических процедур, а также изучение физикохимических свойств. Для достоверной характеризации полученных соединений в работе использовались следующие методы: РСА, рентгенофазовый (РФА) и элементный анализ (СНN, EDS, ИСП-АЭС), термогравиметрический анализ (ТТА), ИК-спектроскопия, спектроскопия ЯМР на ядрах ¹H, ¹³C, ³¹P, ⁷⁷Se, ¹²⁵Te, ⁵¹V, ¹⁸³W, ¹H DOSY ЯМР, ЯМР в твёрдой фазе, капиллярный электрофорез (КЭ) массспектрометрия с ионизацией распылением в электрическом поле (ESI-MS). Электрохимические свойства изучались с помощью циклической вольтамперометрии (ЦВА). Изучение строения супрамолекулярных комплексов ПОМ и октаэдрических кластеров с молекулами γ-циклодекстрина и их поведения в растворе было выполнено

в тесном сотрудничестве с профессором Э. Кадо (E. Cadot) в рамках международной российско-французской лаборатории LIA CLUSPOM.

Теоретическая и практическая значимость. В работе получена новая фундаментальная информация о методах синтеза, реакционной способности, кристаллической структуре, электрохимических свойствах, а также о поведении в растворе ПОМ 5 и 6 групп на примере около сотни новых комплексов. Разработан способ получения смешанных W/Nb комплексов, который может быть использован для синтеза широкого круга таких соединений. Впервые показана применимость сепарационных методов (КЭ, ВЭЖХ и ВЭЖХ-ИСП-АЭС) для изучения поведения ПОМ в растворах, при малой информативности более традиционных методов (ЯМР, масс-спектрометрии и т.д.). Показана электрокаталитическая комплексов $Cs_2K_{10}[Nb_6O_{19}\{Pt(OH)_2\}]_2 \cdot 13H_2O$ активность $O_{2}(H_{2}O_{2})(H_{2}W_{9}O_{33})_{2}$ 38 $H_{2}O$ в процессе окисления воды. Создана уникальная трёхкомпонентная супрамолекулярная система на основе межмолекулярного распознавания на уровне индивидуальных компонентов различной природы: кластерный комплекс – ПОМ – циклодекстрин. Выявление природы специфического молекулярного распознавания в таких комплексах представляет огромный интерес как с теоретической, так и с точки зрения использования в биомедицинских приложениях.

Данные по кристаллическим структурам соединений, полученных в рамках настоящей работы, депонированы в базы структурных данных (**CCDC** и **ICSD**) и доступны для научной общественности.

На защиту выносятся:

- данные по трансформации гексаниобатов в водных растворах при высоких температурах, данные о строении и поведении в растворе полученных комплексов;
- данные по синтезу гибридных полиоксониобатов и полиоксотанталатов, основанные на координации металлоорганических фрагментов к полианионам, данные об их строении и поведении в растворе;
- методы синтеза комплексов ПОМ с благородными металлами, данные об их строении и поведении в растворе;
- данные о поведении ПОМ в растворе, полученные с помощью комбинации ВЭЖХ и ИСП-АЭС, данные о протекании реакций замещения ниобия в растворах гексаниобатов;
- новый метод синтеза смешанных W/Nb ПОМ, основанный на использовании оксалатных комплексов ниобия, данные о строении и поведении в растворе полученных комплексов;
- данные о реакционной способности нелакунарных полиоксоанионов типа Кеггина и Доусона по отношению к координации переходных и постпереходных металлов;
- новые приемы контроля реакций самосборки ПОМ, основанные на изменении рН среды и вариациях топологии строительных блоков, данные об использовании октаэдрических кластеров для направленной сборки супрамолекулярных систем, информация о строении и поведении в растворе полученных комплексов.

Личный вклад автора. Цель и задачи работы, а также пути их решения определялись автором с учётом советов профессора РАН М.Н. Соколова (ИНХ СО РАН) и профессора Э. Кадо (Университет Версаля). Автору принадлежит решающая роль в разработке экспериментальных подходов, интерпретации, обобщении результатов и написании статей. Значительная часть экспериментов по синтезу ПОМ, а также практически все исследования методом РСА проведены лично автором или под его непосредственным руководством.

Степень достоверности результатов исследования определяется их воспроизводимостью и согласованностью данных, полученных различными методами.

Соответствие специальности 02.00.01 — неорганическая химия. Диссертационная работа соответствует п.2 "Дизайн и синтез новых неорганических соединений и особо чистых веществ с заданными свойствами" и п.5 "Взаимосвязь между составом, строением и свойствами неорганических соединений. Неорганические наноструктурированные материалы" паспорта специальности 02.00.01 — неорганическая химия.

Апробация работы. Основные результаты работы докладывались на следующих конференциях и семинарах: Frontiers on Metal Oxide Cluster Chemistry (Лансароте, Испания 2012; Маффлье, Франция 2014; Ньюкасл, Великобритания 2016; Чанчунь, Китай 2017); Школа-конференция молодых ученых "Неорганические соединения и функциональные материалы" (Новосибирск, 2015, 2017), Международная Чугаевская конференция по координационной химии (Казань 2014, Нижний Новгород 2017); CLUSPOM (Катунь, Россия 2016; Ренн, Франция 2017; Жиф-сюр-Иветт, Франция 2018); Международная конференция стран тихоокеанского региона Расіfісhem 2015 (Гонолулу, США); Всероссийский кластер конференций по неорганической химии InorgChem 2018 (Астрахань, Россия) и других. Результаты данной работы были удостоены Премии имени Ю.Т. Стручкова.

Публикации. Результаты работы опубликованы в профильных рецензируемых российских (6 статей) и международных (26 статей) журналах. Все журналы входят в списки индексируемых базами данных Web of Science, Scopus и РИНЦ. Кроме того, результаты представлены в тезисах российских и международных конференций (21 доклад).

Объём и структура работы. Диссертация изложена на 346 страницах, включая 129 рисунков и 27 таблиц. Работа состоит из введения, экспериментальной части, обсуждения результатов, заключения, выводов и списка цитируемой литературы (593 источника).

Все представленные в работе результаты опубликованы, поэтому дополнительные детали могут быть найдены в соответствующих статьях.

Диссертационная работа выполнялась в рамках планов научно-исследовательской работы ИНХ СО РАН, а также при поддержке грантов РФФИ (12-03-00305, 15-03-02775, 17-53-16006) и РНФ (14-13-00645 и 14-13-00645- Π) и гранта Президента РФ МК-333.2017.3.

ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ

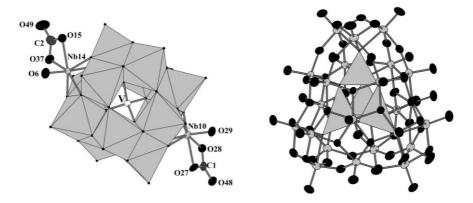
Во *введении* обоснованы актуальность, новизна и значимость темы диссертации, обозначены основные проблемы, определены цели исследований, сформулированы положения, выносимые на защиту.

В экспериментальной части приведены данные о методах синтеза полиоксокомплексов на основе ниобия, тантала, вольфрама, данные о физико-химических методах исследования свойств полученных соединений и их поведения в растворах.

В следующих частях диссертации проводится обобщение, анализ и *обсуждение результатов* по синтезу и свойствам полученных комплексов.

Гексаниобаты и гексатанталаты: получение, особенности строения и структурные трансформации

В литературе получение солей гексаниобата и гексатанталата со щелочными металлами описывается довольно кратко [1-4]. По литературным данным избыток щелочного металла (Na:Ta = 3) приводит к образованию не содержащего анионов [Ta_6O_{19}]⁸ соединения $Na_5[TaO_5]$ при 1000° C [5], тогда как при недостатке щелочного металла и 1250° C образуется перовскитоподобный $NaTaO_3$ [6–8]. В ходе нашего исследования взаимодействие оксида тантала и расплава гидроксида натрия проводили в мольном отношении 1:19 при 450° C. Полученная после экстракции водой и перекристаллизации натриевая соль $Na_8[Ta_6O_{19}]\cdot 24,5H_2O$ (1) дополняет ряд известных к настоящему моменту солей оксоцентрированных изополианионов $A_xB_y[Ta_6O_{19}]\cdot nH_2O$, где A и B = Na, K, Rb, Cs.


Подкисление раствора $Na_7[HNb_6O_{19}]\cdot 15H_2O$ до pH 9 приводит к кристаллизации $Na_{10}[\{Na(H_2O)H_2Nb_6O_{19}\}_2(\mu-H_2O)_2]\cdot 46H_2O$ (2). С другой стороны, даже очень большой избыток щёлочи не приводит к потере протона и соль с 8 катионами натрия не может быть получена напрямую. Хотя в некоторых работах и упоминается о гидрате $Na_8[Nb_6O_{19}]\cdot 13H_2O[9,10]$ без какой-либо структурной характеризации, реальный продукт, скорее всего, соответствует $Na_7[HNb_6O_{19}]\cdot 15H_2O$. По-видимому, первым примером восьмизамещённой натриевой соли гексаниобата является $Na_8[Nb_6O_{19}]\cdot 25H_2O$ (3), который впервые был получен подщелачивании горячего нами при $K_9Na_2[HMn(Nb_6O_{19})_2]\cdot 18,5H_2O.$

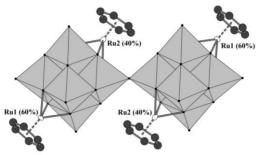
Исходя из особенностей строения анионов Линдквиста, можно представить существование гетерометаллических производных, в которых по меньшей мере один из атомов ниобия замещён на другой элемент в октаэдрической координации. При этом в широком смысле речь может идти о замене фрагмента $\{Nb=O\}^{3+}$ на эквивалентный, не обязательно изозарядный, фрагмент, например, на {Te-OH}⁵⁺. Возможность образования теллурзамещённого аниона Линдквиста $[(OH)TeNb_5O_{18}]^{6-}$ была впервые показана Кейси и соавторами при растворении Nb₂O₅·хH₂O в метанольном растворе Me₄NOH в присутствии H_6 TeO₆ в жёстких условиях [11]. Мы показали методом ¹²⁵Te ЯМР, что реакция $H_6 TeO_6$ с гексаниобатом в воде в относительно мягких условиях количественно приводит к $[(OH)TeNb_5O_{18}]^{6-}$. В течение нескольких часов сигнал от H_6TeO_6 исчезает, а сигнал теллуропентаниобата $[(OH)TeNb_5O_{18}]^{6-}$ при 756 м.д. $(25^{\circ}C)$ постепенно возрастает. Из реакционной смеси после взаимодействия Н₆ТеО₆ с гексаниобатом натрия удалось выделить пригодные для РСА монокристаллы $Na_6[(OH)TeNb_6O_{18}]\cdot 15H_2O$ (4), который изотипен $Na_7[HNb_6O_{19}]\cdot 15H_2O$. Эта реакция открывает прекрасные возможности для модификации гексаниобата.

Для получения силикатониобатов М. Найман и сотр. использовали сольвентотермальное растворение гидратированного оксида ниобия в присутствии основания и тетраэтоксисилана как источника силиката [12]. В нашем исследовании было показано, что термолиз водного раствора

 $K_7[HNb_6O_{19}]\cdot 13H_2O$ и $Na_2SiO_3\cdot 9H_2O$ или $Ph_2Si(OH)_2$ при $220^{\circ}C$ в течение 10 часов приводит к образованию лакунарного полиоксоаниона $\left[Si_4Nb_{16}O_{56}\right]^{16-}$ с приемлемыми выходами. Продукты реакции были выделены и охарактеризованы методом PCA в виде $NaK_8H_6[Na@Si_4Nb_{16}O_{56}]\cdot 26H_2O$ (8) и $K_{14}H[K@Si_4Nb_{16}O_{56}]\cdot 26H_2O$ (9), соответственно. Более длительное нагревание приводит к перегруппировке лакунарной структуры $\left[Si_4Nb_{16}O_{56}\right]^{16-}$ в закрытый анион со структурой α -Кеггина $\left[SiNb_{12}O_{40}\right]^{16-}$, который был выделен и охарактеризован методом PCA в виде $K_8H_2(Nb_2O_2)[SiNb_{12}O_{40}]\cdot 20H_2O$ (10).

Нагревание смеси метаванадата и гексаниобата натрия при 220°C (начальный рН 12) в течение 18 часов даёт обильный аморфный осадок и прозрачный бесцветный раствор, который содержит, по данным 51 V ЯМР, в основном циклический тетраваданат $[V_4O_{12}]^{4-}$, а также небольшое количество нового продукта. Контролируемое упаривание раствора приводит к появлению кристаллов комплекса $Na_9[H_4VNb_{12}O_{40}\{NbO(CO_3)\}_2]\cdot 37H_2O$ (11), который был охарактеризован методом PCA. Включение карбоната связано с поглощением CO_2 из воздуха щелочным маточным раствором. Добавление $NaHCO_3$ в реакционную смесь заметно улучшает выход продукта. Анион $[VNb_{14}O_{42}(CO_3)_2]^{13-}$ (рис. 1, основные длины связей: d(O6-Nb14)=1,772(7); d(O15-Nb14)=2,181(7); d(O37-Nb14)=2,149(7); d(O27-Nb10)=2,175(7); d(O28-Nb10)=2,170(6); d(O29-Nb10)=1,774(7) Å; $d(V-O)_{cp}=1,695(6)$ Å) имеет структуру типа α -Кеггина с двумя дополнительными фрагментами $\{NbO(CO_3)\}^+$, в которых атом ниобия имеет K4 7.

Рис. 1. Строение аниона $[VNb_{14}O_{42}(CO_3)_2]^{13-}$ (*слева*). Строение аниона $[K@V_xNb_{24}O_{76}]^n$ (*справа*).


Анионы подобного типа очень характерны для химии ванадия – например, $[PV_{14}O_{42}]^{9-}$ или смешанные анионы $[PM_xV_{12-x}O_{40}(VO)_2]^{n-}$ (M=Mo,W), но вся химия таких комплексов ограничивается кислыми средами, в то время как полиниобаты существуют только в основных средах. Была изучена стабильность $[VNb_{14}O_{42}(CO_3)_2]^{13-}$ в зависимости от рН методом ^{51}V ЯМР-спектроскопии, что позволило пронаблюдать эволюцию аниона от "двухшапочного" до свободного аниона Кеггина через образование полимерных цепей $[(Nb_2O_2)(VNb_{12}O_{40})]_n$. При рН 10,2 в растворе присутствует $[VNb_{14}O_{42}(CO_3)_2]^{13-}$ (-535 м.д.), анион типа Кеггина $[VNb_{12}O_{40}]^{15-}$ (-482 м.д.) и олигомеры. В масс-спектре этого раствора наблюдаются пики ассоциатов $[VNb_{12}O_{40} + xH^+ + yNa^+]^{2-}$ и $[VNb_{14}O_{42}(CO_3)_2 + xH^+ + yNa^+]^{2-}$ с доминированием форм, содержащих анион типа Кеггина. При увеличении рН до 11,6 олигомерные формы пропадают, а выше 11,6 $[VNb_{12}O_{40}]^{15-}$ не наблюдается, а вместо него появляется острый сигнал при -492 м.д., который, по-видимому, принадлежит $[VNb_{13}O_{41}(CO_3)]^{14-}$, и широкий сигнал при -495 м.д., который может принадлежать димеру $[(\mu-Nb_2O_2)(VNb_{13}O_{41}(CO_3))_2]^{22-}$.

Противоионы оказывают очень сильное влияние как на растворимость, так и на структуру образующихся в их присутствии полиоксониобатов и танталатов. Исходя из этого, мы изучили продукты, образующиеся при нагревании следующих солей гексаниобат-аниона и метаванадата: i) $Na^+ + Na^+$ и ii) $K^+ +$ Na⁺, соответственно. В случае натриевых солей был обнаружен только комплекс 11, а в присутствии К⁺, после тщательного контроля за процессом кристаллизации из реакционной смеси, были получены кристаллы комплекса $K_6Na_{8.5}[Nb_{24}V_{3.5}O_{76}]\cdot 42H_2O$ (12), содержащие анион $[K@V_xNb_{24}O_{76}]^{n-}$ (рис. 1). Внутри аниона $[K@V_xNb_{24}O_{76}]^{n-}$ имеется пять полостей - четыре псевдотетраэдрические Т-полости (с четырьмя короткими (1,829 - 2,088 Å) и двумя длинными (2,395 - 2,434 Å) расстояниями V-O) и большая, подобная "краун-эфиру" - в нижней части. Т-полости заняты атомами ванадия полностью или на ³/₄, а большую лакуну занимает катион К⁺. Эти четыре Т-полости образуют супертетраэдрическую полость с топологией структуры Р₄О₁₀. Таким образом, $[V_4Nb_{24}O_{76}]^{12-}$ можно рассматривать как полиниобат, собранный вокруг V_4O_{10} в качестве матрицы, являющейся аналогом молекулярного P_4O_{10} , и неизвестного в свободном состоянии (эта молекула наблюдалась лишь в газовой фазе [13]), но стабилизированного внутри полиоксониобата. Анион $[V_3Nb_{24}O_{76}]^{17-}$ можно аналогичным образом рассматривать как включающий циклический триванадат $[V_3O_9]^{3-}$, который вносит лишь незначительный вклад в равновесия в растворах свободных ванадатов. Таким образом, происходит матричная стабилизация малоустойчивых в свободном виде оксованадатов.

Координация металлоорганических фрагментов к ПОМ 5 группы Использование координированных фрагментов в качестве маркеров для изучения поведения полиоксометаллатов в растворе

ПОМ металлоорганических фрагментов, Координация таких или $\{Cp*Rh\}^{2+}$, открывает широкие возможности $\{(p\text{-cymene})Ru\}^{2+}$ для синтеза смешаннометаллических комплексов, которые мы будем называть гибридными комплексами, благодаря сочетанию чисто неорганической (ПОМ) и металлоорганической частей. Подобные гибридные соединения интересны не только с академической точки зрения в контексте развития химии ПОМ, но и с точки зрения их потенциальной каталитической активности [14]. В нашем исследовании мы сосредоточились на систематическом изучении координации легкодоступных и устойчивых полусэндвичевых фрагментов $\{(C_6H_6)Ru\}^{2+}$ и $\{Cp*M\}^{2+}$ (M = Rh, Ir) к полиниобатам и политанталатам. Важным стимулом для развития этого направления послужила возможность использования координированных металлоорганических фрагментов в качестве маркеров для изучения поведения ПОМ металлов 5 группы в растворе методами ЯМР. Это связано с тем, что для чисто неорганических полиниобатов и танталатов методы ЯМР (как и другие спектроскопические методы) малоинформативны. Координация органического фрагмента вводит в состав ПОМ такие ядра как ¹Н и ¹³С, делая доступным весь широкий арсенал методов современной ЯМРспектроскопии.

Координация $\{(C_6H_6)Ru\}^{2+}$ к $[Ta_6O_{19}]^{8-}$ уменьшает отрицательный заряд гексатанталата и степень протонирования, тем самым снижая рН по мере комплексообразования, что можно использовать как первичный индикатор реакции. Действительно, нагревание смеси $Na_8[Ta_6O_{19}]\cdot 24,5H_2O$ и $[(C_6H_6)RuCl_2]_2$ (соотношение ПОМ / Ru 1: 1) приводит к образованию жёлтого раствора с рН продуктом котором основным должен быть $[\{(C_6H_6)Ru\}Ta_6O_{19}]^{6-}$ (13⁶⁻). Медленное упаривание реакционного раствора на воздухе приводит к жёлтым пластинчатым кристаллам комплекса $Na_{10}[\{(C_6H_6)\hat{R}uTa_6O_{18}\}_2(\mu-O)]\cdot 39,4H_2O$ (13), состав и строение которого были установлены методом PCA. В его структуре присутствуют $[\{(C_6H_6)RuTa_6O_{18}\}_2(\mu-O)]^{10-}$ (рис. 2), построенные из двух $\{(C_6H_6)RuTa_6O_{18}\}$, объединённых симметричным, линейным оксидным мостиком.

Рис. 2. Строение аниона [$\{(C_6H_6)RuTa_6O_{18}\}_2(\mu-O)\}^{10-}$ (*атомы водорода бензольных колец опущены*) в кристаллической структуре комплекса **13**.

Уменьшение количества гексатанталата до мольного соотношения $[Ta_6O_{19}]^{8-}$ / Ru=1: 2 приводит к преимущественному образованию аниона $[\{(C_6H_6)Ru\}_2Ta_6O_{19}]^{4-}$ (конечный рН 7,6), выделенного и охарактеризованного в виде натриевой соли $Na_4[mpahc-\{(C_6H_6)Ru\}_2Ta_6O_{19}]\cdot 20H_2O$ (14).

Мы использовали метод ¹H DOSY ЯМР для изучения поведения комплекса 13 в водном растворе, поскольку мономерная и димерная формы должны иметь разные коэффициенты самодиффузии. Эксперимент в D₂O дал коэффициенты самодиффузии D = $315 \pm 10 \text{ мкм}^2 \cdot \text{c}^{-1}$ и D = $325 \pm 10 \text{ мкм}^2 \cdot \text{c}^{-1}$, соответственно, для сигналов при 5,85 м.д. и 5,94 м.д. Столь близкие значения показывают, что соответствующие этим сигналам комплексы обладают близкими гидродинамическими радиусами и тем самым исключают присутствие димерных анионов $[\{(C_6H_6)RuTa_6O_{18}\}_2(\mu-O)]^{10-}$. Полная диссоциация димерного аниона в водном растворе была подтверждена и методом капиллярного электрофореза. Водный раствор 13, к которому в качестве эталона добавлено некоторое количество 14, демонстрирует два хорошо разрешенных пика. Второй пик соответствует сольватированному аниону 144-, что было подтверждено ЭСП и методом добавок. В связи с этим, первый пик должен соответствовать сольватированному мономерному аниону $[\{(C_6H_6)Ru\}Ta_6O_{19}]^{6-}$, поскольку сигнал от димера, который имеет больший размер и заряд, и большее время удерживания, должен появиться только после второго сигнала. Таким образом, КЭ также свидетельствуют о том, что в водном растворе $[\{(C_6H_6)RuTa_6O_{18}\}_2(\mu-O)]^{10-}$ распадается на мономерные анионы $[\{(C_6H_6)Ru\}Ta_6O_{19}]^{6-}$.

Нагревание водного раствора $K_7[HNb_6O_{19}] \cdot 13H_2O$ или $Cs_8[Ta_6O_{19}] \cdot 14H_2O$ в присутствии $[Cp*RhCl_2]_2$ (мольное соотношение $\{Cp*Rh\}^{3+}$ и $[M_6O_{19}]^{8-}$ в обоих случаях 2:1) при 80-90°С в течение 8 часов приводит к растворению металлоорганического комплекса с образованием жёлто-оранжевых растворов с рН 8,8. Диффузия паров ацетона в реакционные растворы приводит к кристаллизации $K_4[(Cp*Rh)_2Nb_6O_{19}]\cdot 20H_2O$ (15) и $Cs_4[(Cp*Rh)_2Ta_6O_{19}]\cdot 18H_2O$ (16). Продукты реакций калиевой и цезиевой солей $[M_6O_{19}]^{8-}$ с $[Cp*RhCl_2]_2$ в мольном соотношении $[M_6O_{19}]^{8-}$ / $\{Cp*Rh\}^{2+}$ 1:1 в приведённых выше условиях были изучемасс-спектрометрии, показавшей помощью образование $[\{Cp*Rh\}_2M_6O_{19}]^{4-}$. Взаимодействие натриевой соли гексатанталата и $[Cp*RhCl_2]_2$ в соотношении $[Ta_6O_{19}]^{8-}/\{Cp*Rh\}^{2+}=1:2$ приводит к образованию соответствующего гибридного аниона, который был выделен и структурно охарактеризован в виде натриевой соли $Na_4[\{Cp*Rh\}_2Ta_6O_{19}]\cdot 17H_2O$ (18), который устойчив в водном растворе. При комнатной температуре в ПМР-спектре наблюдаются два сигнала от неэквивалентных протонов метильных групп Ср* лигандов, ввиду их замороженного вращения, вызванного отталкиванием от атомов кислорода гексатанталата.

Проведение реакций с $[Cp*IrCl_2]_2$ в условиях, аналогичных использованным для координации $\{Cp*Rh\}^{2+}$, приводит к зелёно-жёлтым растворам и большому количеству зелёного осадка. Тщательный подбор условий синтеза имеет решающее значение. Чтобы предотвратить окисление Ir^{3+} кислородом

воздуха, к реакционной смеси добавляли немного этанола. Это ускоряет растворение $[Cp*IrCl_2]_2$, но уменьшает выходы вследствие образования побочных продуктов.

Реакция Na₇[HNb₆O₁₉]·15H₂O с [Cp*IrCl₂]₂ в водном растворе при 50-60°С, в присутствии небольшого количества этанола для подавления окисления Ir³⁺ до Іг⁴⁺, приводит к жёлтому раствору, диффузия паров ацетона в который приводит к кристаллизации смеси солей состава $Na_4[\{Cp*Ir\}_2Nb_6O_{19}]\cdot 22H_2O$ (25) и Na₈[H₂(Cp*IrNb₆O₁₈)₂(O)]·47H₂O (26), монокристаллы которых были разделены вручную и охарактеризованы методом РСА. Кристаллическая структу- $Na_8[H_2(Cp*IrNb_6O_{18})_2(O)]\cdot 47H_2O$ содержит $[H_2(Cp*IrNb_6O_{18})_2(O)]^{8-}$, которые обладают той же структурой полиоксометаллатного остова, как и ранее рассмотренный $[\{(C_6H_6)RuTa_6O_{18}\}_2(O)]^{10}$. Таким образом, конденсация гибридных комплексов в оксо-мостиковые димеры возможна как для ниобатов, так и для танталатов. Стоит ещё раз подчеркнуть, что такая конденсация никогда не наблюдалась для свободных гексаметалатов. Вероятно, координация одного положительно заряженного металлоорганического фрагмента, такого как $\{Cp*Ir\}^{2+}$ или $\{(C_6H_6)Ru\}^{2+}$, приводит к перераспределению отрицательного заряда на анионе Линдквиста с возникновением своего рода диполя, что облегчает конденсацию.

Реакция с гексатанталатом натрия в мольном соотношении 1:2 приводит к образованию большого количества зелёного осадка и жёлтого раствора. Окисления Ir^{III} в растворе танталата (образование зелёного осадка) нельзя избежать даже в присутствии EtOH, а выход гибридного комплекса ниже, чем в случае Nb. Диффузия паров ацетона в жёлтый фильтрат приводит к образовапластинчатых жёлтых $Na_6[\{Cp*Ir\}Ta_6O_{19}]\cdot 27H_2O$ (27). 26, гибридные В отличие от $[\{Cp*Ir\}Ta_6O_{19}]^{6-}$ присутствуют в кристаллической структуре 27 в мономерной форме. Это первый структурно охарактеризованный пример мономерного гибридного аниона с соотношением ПОМ-полусэндвичевый фрагмент 1:1 на основе $[M_6O_{19}]^{8-}$.

Реакции Na₇[HNb₆O₁₉]·15H₂O, K₇[HNb₆O₁₉]·13H₂O и Na₈[Ta₆O₁₉]·24,5H₂O с [Cp*IrCl₂]₂ в отношении {Cp*Ir}²⁺ / [M₆O₁₉]⁸⁻ 2: 1 в указанных выше условиях приводят к следующим продуктам: Na₄[{Cp*Ir}₂Nb₆O₁₉]·22H₂O (**25**), K₄[*mpaнс*-{Cp*Ir}₂Nb₆O₁₉]·22H₂O (**24**) и Na₄[{Cp*Ir}₂Ta₆O₁₉]·24H₂O (**28**), соответственно. Монокристаллы были получены диффузией паров ацетона в водные растворы реакционных смесей. В кристаллических структурах присутствуют гибридные анионы [{Cp*Ir}₂M₆O₁₉]⁴⁻ (d(Ir-O)_{cp} = 2,147(4) Å (**25**), 2,133(3) Å (**24**), 2,156(5) Å (**28**)).

Следует отметить, что во всех случаях два полусэндвичевых фрагмента координируется к противолежащим граням октаэдра (транс-координация).

Координация металлоорганических фрагментов к гексаниобатам и гексатанталатам должна обеспечивать их растворимость в органических растворителях, как это происходит в случае молибдена и вольфрама [15,16]. Однако из всех органических растворителей полученные нами соли гибридных анионов $[\{Cp^*M'\}_xM_6O_{19}]^{n-}$ и $[\{(C_6H_6)Ru\}_xM_6O_{19}]^{n-}$ (M' = Rh, Ir; x=1,2; n=6,4) с катионами щелочных металлов (Na⁺, K⁺, Cs⁺) способны растворяться только в метаноле. Несмотря на присутствие двух липофильных лигандов Cp*, они не растворяются ни в ацетонитриле, ни в хлористом метилене, ни даже в близком по свойствам этаноле!

Исследования метанольных растворов, содержащих $[{Cp*Rh}_2M_6O_{19}]^4$, показали образование метоксокомплексов, которые были легко идентифицированы на основе значений т/х и их изотопного распределения. Натриевые соли комплексов $Na_4[\{Cp*Ir\}_2Nb_6O_{19}]\cdot 22H_2O$ и $Na_6[\{Cp*Ir\}Ta_6O_{19}]\cdot 27H_2O$ также растворимы в CH₃OH, и в этих растворах, согласно данным ESI-MS, присутствуют сигналы от моно- и диметоксопроизводных. Метоксокомплексы были обнаружены и в спектрах ESI-MS $[\{Cp*Ir\}_{2}TeNb_{5}O_{19}]^{3-}$ и $[\{Cp*Ir\}_{2}TeNb_{5}O_{19}]^{5-}$. Это указывает на общую тенденцию гибридных анионов к образованию метоксопроизводных при растворении в метаноле. Однако перекристаллизация $Na_4[\{(C_6H_6)Ru\}_2Nb_6O_{19}]$ из CH_3OH даёт крупные жёлтые кристаллы состава $Na_4[\{(C_6H_6)Ru\}_2Nb_6O_{19}]\cdot 14,125MeOH\cdot 2H_2O$ (29), структура которого определена методом PCA. Соли $K_4[\{Cp*Rh\}_2Nb_6O_{19}]\cdot 20H_2O$ и $K_4[\{Cp*Ir\}_2Nb_6O_{19}]\cdot 22H_2O$ также растворяются в метаноле. Из полученных растворов были выделены $K_4[\{Cp*Rh\}_2Nb_6O_{19}]\cdot 4MeOH\cdot 10H_2O(30)$ кристаллы И $K_4[\{Cp*Ir\}_2Nb_6O_{19}]\cdot 10MeOH\cdot 4H_2O$ (31) соответственно.

На основании данных ЯМР, РСА и масс-спектрометрии можно сказать, что специфическая растворимость гибридных комплексов с катионами щелочных металлов в метаноле обусловлена как образованием метоксокомплексов (обнаруженных как в разбавленных, так и в относительно концентрированных растворах), так и специфической сольватацией катионов Na⁺ и K⁺, вкупе с гидрофобными взаимодействиями между MeOH и Cp^* или C_6H_6 . Это не объясняет отсутствие растворимости в этаноле, который является лучшим донором по сравнению с метанолом. Однако СН₃ОН отличается от С₂Н₅ОН существенно большим значением диэлектрической постоянной (ε), 31 против 24. Таким образом, метанол лучше этанола подходит для разрушения кристаллической решётки этих ионных соединений именно из-за достаточно высокого значения є. Практически все кристаллические структуры гибридных комплексов демонстрируют слоистый тип кристаллической упаковки, в которой слои составлены из анионов, катионов щелочного металла и молекул воды. Между собой эти слои всегда стыкуются посредством π - π взаимодействий. Наличие такого зазора между слоями способствует диффузии молекул растворителя и сольватации катионов. Введение металлоорганических группировок приводит к самоорганизации в твёрдой фазе, которая способствует появлению уникального свойства – селективной растворимости в метиловом спирте.

Некоторые данные о гибридных комплексах, полученных в данном исследовании представлены в табл. 1.

Таблица 1 Гибридные комплексы, полученные в данной работе

Комплекс	Состояние в твёрдой	Состояние в растворе
	фазе	
$Na_{10}[\{(C_6H_6)RuTa_6O_{18}\}_2(\mu-O)]\cdot 39,4H_2O$ (13)	Димер	Мономер
$Na_4[mpahc-\{(C_6H_6)Ru\}_2Ta_6O_{19}]\cdot 20H_2O$ (14)	Мономер	Мономер
$K_4[mpahc-\{Cp*Rh\}_2Nb_6O_{19}]\cdot 20H_2O$ (15)	Мономер	Мономер
Cs ₄ [<i>mpaнc</i> -{Cp*Rh} ₂ Ta ₆ O ₁₉]·18H ₂ O (16)	Мономер	Мономер
$Na_4[mpahc-\{Cp*Rh\}_2Ta_6O_{19}]\cdot 24H_2O$ (18)	Мономер	Мономер
$Na_3[\{Cp*Rh\}_2TeNb_6O_{19}]\cdot 24H_2O$ (20)	Мономер	Мономер
$K_4[mpahc-\{Cp*Ir\}_2Nb_6O_{19}]\cdot 22H_2O$ (24)	Мономер	Мономер
Na ₄ [<i>mpaнc</i> -{Cp*Ir} ₂ Nb ₆ O ₁₉]·22H ₂ O (25)	Мономер	Мономер
$Na_8[H_2\{Cp*IrNb_6O_{18}\}_2(O)]\cdot 47H_2O$ (26)	Димер	Мономер
Na ₆ [{Cp*Ir}Ta ₆ O ₁₉]·27H ₂ O (27)	Мономер	Мономер
Na ₄ [mpahc-{Cp*Ir} ₂ Ta ₆ O ₁₉]·24H ₂ O (28)	Мономер	Мономер
Na ₄ [транс-	Мономер	Мономер
$\{(C_6H_6)Ru\}_2Nb_6O_{19}\}\cdot 14,125MeOH\cdot 2H_2O$ (29)		
$K_4[mpahc-\{Cp*Rh\}_2Nb_6O_{19}]\cdot 4MeOH\cdot 10H_2O$ (30)	Мономер	Мономер
$K_4[mpahc-\{Cp*Ir\}_2Nb_6O_{19}]\cdot 10MeOH\cdot 4H_2O$ (31)	Мономер	Мономер
$Cs_4[\{(C_6H_6)Ru\}_2Nb_6O_{19}]\cdot 8MeOH\cdot 2H_2O$ (32)	Мономер	Мономер
$Cs_4[\{(C_6H_6)Ru\}_2Nb_6O_{19}]\cdot 4MeOH\cdot 6H_2O$ (33)	Мономер	Мономер
$Na_6[H\{(C_6H_6)Ru\}_4VNb_{12}O_{40}]\cdot 41,25H_2O$ (34)	Мономер	Мономер,
		смесь изомеров

Метод ВЭЖХ-ИСП-АЭС и его применение для изучения состояния ПОМ в водных растворах

Одной из главных особенностей химии ПОМ является их лабильность как в водных растворах, так и в органических растворителях (зачастую структурные перестройки происходят при переходе из водной в органическую фазу), что приводит к образованию целого набора продуктов, которые трудно разделить и идентифицировать из-за близости их химического поведения и отсутствия референсных спектральных данных для индивидуальных компонентов смеси. Поскольку вопрос идентичности состава и строения ПОМ в твёрдой фазе и растворах является принципиально важным, представляет безусловный интерес исследование растворной химии ПОМ. Для наблюдения за процессами образования и эволюции различных химических форм ПОМ в растворах и корректной оценки вклада различных процессов требуются специальные прямые методы и подходы, иначе неизбежны серьёзные ошибки. Разобраться с числом компонентов может помочь, например, высокоэффективная жидкостная хроматография (ВЭЖХ), однако имеется лишь несколько примеров применения этого метода в химии ПОМ [17-19]. Большие возможности открывают комбинированные методы, такие как комбинация ВЭЖХ или КЭ с элементселективным детектором, например, атомно-эмиссионной спектрометрией с индуктивно связанной плазмой (ИСП-АЭС). К моменту начала наших исследований нам не удалось найти ни одной публикации, посвященной исследованию ПОМ с использованием такого подхода. В данной работе нам удалось

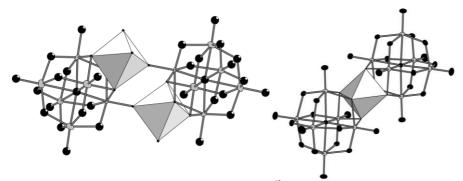
создать и протестировать на нескольких примерах эффективный инструмент для изучения поведения ПОМ в водных растворах в большом интервале рН.

В 2007 году Розанцев и др. сообщили о титровании смесей $[Nb_6O_{19}]^{8-}$ и вольфрамата соляной кислотой и оценили термодинамические параметры образования $[Nb_2W_4O_{19}]^{4-}$ и $[Nb_3W_3O_{19}]^{5-}$ [20–22]. Чтобы получить более детальную информацию об образовании различных $[Nb_xW_{6-x}O_{19}]^{n-}$, мы изучили продукты реакции между гексаниобатом и вольфрамовой кислотой при базовом рН раствора гексаниобата и различных исходных молярных соотношениях методом ВЭЖХ-ИСП-АЭС. Данные УФ-детектора дают информацию о количестве различных форм в растворе и временах удерживания, тогда как данные ВЭЖХ-ИСП-АЭС дают возможность рассчитать отношение Nb / W для каждого пика и распределение Nb между разными формами. Из полученных данных следует, что "средне-замещённые" $[Nb_4W_2O_{19}]^{6-}$ и $[Nb_3W_3O_{19}]^{5-}$ являются наиболее предпочтительными продуктами в этой системе и существуют в равновесии практически во всём интервале концентраций. Известно, что при понижении рН $[Nb_3W_3O_{19}]^{5-}$ становится неустойчивым и полностью преобразуется в $[Nb_2W_4O_{19}]^{4-}$ [23]. Образование смешанных анионных форм в системе $[Nb_6O_{19}]^{8-}$ / H_2WO_4 также зависит от начальной концентрации реагентов. Разбавление в основном влияет на равновесие между $[Nb_4W_2O_{19}]^{6-}$ и $[Nb_3W_3O_{19}]^{5-}$: разница между вкладом этих двух форм становится более выраженной.

Интересной проблемой химии анионов типа Линдквиста является получение триметаллических анионов, включающих, например, ниобий, теллур и вольфрам. С этой целью мы изучили реакции теллуропентаниобата 4 с вольфрамовой кислотой. Для контроля эффективности и максимального разрешения использовалось последовательное двойное детектирование (УФ и ИСП-АЭС). Образование триметаллических комплексов не было обнаружено, вместо этого происходит замещение теллура на вольфрам. Таким образом, был открыт первый пример замещения одного гетероэлемента другим в монозамещенных гексаниобатах.

Основное различие между включением W и Te в структуру гексаниобата связано со степенью замещения. В случае вольфрама анион Линдквиста может быть последовательно трансформирован из $[{\rm Nb_6O_{19}}]^{8-}$ в $[{\rm Nb_2W_4O_{19}}]^{4-}$, в то время как в случае теллура может быть включен только один атом. Причины этого различия являются как кинетическими, так и термодинамическими. Известно, что W(VI) в основных растворах представляет собой тетраэдрический WO₄ $^{2-}$ анион, который может легко расширить свою координационную сферу, тогда как Te(VI) всегда является октаэдрическим в водных растворах. С электронной точки зрения как W(VI), так и Nb(V) имеют конфигурацию d^0 с аналогичными координационными предпочтениями, включая формирование сильно искажённой координаты $\{O=M--O\}$. Этот факт является предпосылкой для образования этими элементами анионов Линдквиста с сильным анизотропным связыванием вдоль координаты $\{O_t-M-\mu_6-O\}$. Напротив, для Te(VI) такое искажение очень невыгодно, с явным предпочтением почти идеальной октаэдрической

координации. Можно ожидать, что включение более одного атома Те в структуру аниона Линдквиста вызовет слишком большое напряжение, превышающее допустимый предел для этого структурного типа.

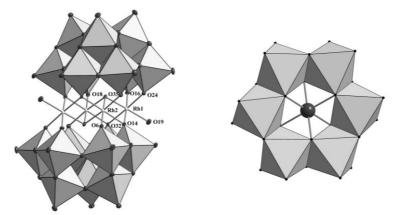

Каталитические свойства ванадийсодержащих анионов Кеггина хорошо известны. Их ниобийзамещенные аналоги гораздо менее изучены. Нами было ниобовольфрамофосфатов $[PNb_{x}W_{12-x}O_{40}]^{(3+x)-}$ образование (x = 1-3, 6ыли обнаружены все возможные геометрические изомеры) в реакциях самосборки из вольфрамата, Nb-Ox и фосфорной кислоты. В случае молибдатов вообще опубликована лишь одна, сомнительная, работа о получении $[PNbMo_{11}O_{40}]^{4-}[24]$. Чтобы получить достоверную информацию о существовании $[PNb_xMo_{12-x}O_{40}]^{(3+x)-}$, мы применили комбинированный метод ВЭЖХ-ИСПфосфомолибденовой АЭС для детекции продуктов реакции $H_3 PMo_{12}O_{40}$ с Nb-Ox в разных мольных соотношениях. Движущей силой этой реакции является образование малорастворимых оксалатных комплексов молибдена [25]. На основании полученных данных было показано, что реакция фосфомолибденовой кислоты с оксалатными комплексами ниобия приводит к образованию $[PMo_{11}NbO_{40}]^{4-}$ и $[PMo_{10}Nb_2O_{40}]^{5-}$. В отличие от ниобовольфрамофосфатов и ванадомолибдофосфатов, в реакции замещения не обнаружен тризамещённый анион Кеггина [PMo₉Nb₃O₄₀]⁶⁻, который, однако, зафиксирован в реакции самосборки из Nb-Ox, фосфорной кислоты и молибдата натрия.

Благородные металлы в химии ПОМ 5 и 6 групп

Комплексы ПОМ с благородными металлами демонстрируют в высшей степени необычные, подчас уникальные химические свойства, такие как металлирование связи С-Н с образованием металлоорганических соединений, устойчивых в водных растворах и на воздухе, активация нитридных лигандов, высокая активность в реакциях окисления и др. [14,26]. Несмотря на то, что координационная химия платины имеет долгую историю и может рассматриваться как классика неорганической химии, на удивление мало известно о координации Pt(IV) и, в особенности, Pt(II) полиоксометаллатами. Более того, некоторые сообщения о якобы платинасодержащих ПОМ являются сомнительными. К моменту начала работы надежно охарактеризованные Pt-содержащие ПОМ ограничивались рядом Pt(IV)-содержащих структур типа Андерсона с различной степенью протонирования, получивших широкую известность в узких кругах благодаря многочисленным, хотя и весьма однотипным, работам проф. Ли (Ю. Корея) [27].

Нами было обнаружено, что реакция $[Pt(OH)_4(H_2O)_2]$ с $K_7[HNb_6O_{19}]\cdot 13H_2O$ в мольном отношении 1:1 при 150°C даёт желтый раствор, который имеет только один сигнал в ¹⁹⁵Pt ЯМР-спектре при 3189 м.д. Сам $[Pt(OH)_4(H_2O)_2]$ в этих условиях имеет сигнал при 3308 м.д. Медленное упаривание раствора на воздухе привело к кристаллизации сростков игольчатых жёлтых кристаллов $Cs_2K_{10}[Nb_6O_{19}\{Pt(OH)_2\}]_2\cdot 13H_2O$ (37), которые были охарактеризованы методом PCA. Анион $[(Nb_6O_{19}\{Pt(OH)_2\})_2]^{12-}$ (рис. 3) представляет собой димерный

комплекс на основе одношапочного аниона Линдквиста. Координационное окружение Pt(IV) состоит из трёх атомов кислорода одной из граней $\{Nb_3O_3\}$ аниона $[Nb_6O_{19}]^{8-}$ ($d(Pt-O)=2,028(13),\,2,010(14)$ и 2,124(14) Å), терминального оксолиганда второго $[Nb_6O_{19}]^{8-}$ аниона (d(Pt-O)=1,998(11) Å) и двух терминальных OH-групп (d(Pt-O)=2,015(16) и 1,994(14) Å).


Рис. 3. Строение аниона $[Nb_6O_{19}\{Pt(OH)_2\}]_2^{12-}$ в кристаллической структуре $Cs_2K_{10}[Nb_6O_{19}\{Pt(OH)_2\}]_2\cdot 13H_2O$ (*слева*); Строение аниона $[Pt(Nb_6O_{19})_2]^{12-}$ в кристаллической структуре комплекса $Na_2K_{10}[Pt(Nb_6O_{19})_2]\cdot 18H_2O$ (*справа*).

Реакция [Pt(OH)₄(H₂O)₂] и K_7 [HNb₆O₁₉]·13H₂O в мольном соотношении 1:2 при температуре 160-190°C даёт жёлтый раствор, который имеет два сигнала в ¹⁹⁵Pt ЯМР-спектре при 3189 и 3422 м.д. с относительной интенсивностью 0,75 / 0,25. Медленное упаривание этого раствора приводит к первоначальной кристаллизации светло-жёлтых полиэдрических кристаллов Na_2K_{10} [Pt(Nb₆O₁₉)₂]·18H₂O (**38**), что, скорее всего, обусловлено более низкой растворимостью этого комплекса по сравнению с **37**. Катионы натрия входят в структуру за счёт выщелачивания стекла в сильно основных реакционных растворах в жёстких условиях.

Комплекс $Cs_2K_{10}[Nb_6O_{19}\{Pt(OH)_2\}]_2\cdot 13H_2O$ проявляет электрокаталитическую активность в процессе окисления воды в 0,1 M растворе Na_2SO_4 в качестве фонового электролита. В анодной области наблюдается значительный рост анодного тока для волны окисления воды (выделения кислорода) в результате каталитического действия $Cs_2K_{10}[Nb_6O_{19}\{Pt(OH)_2\}]_2\cdot 13H_2O$: величина силы тока в присутствии $Cs_2K_{10}[Nb_6O_{19}\{Pt(OH)_2\}]_2\cdot 13H_2O$ в несколько раз выше, чем для чистого раствора. Возможный механизм может включать электрохимическое окисление координированной Pt(IV) до Pt(V) с последующим окислением координированного гидроксида в координационной сфере этого сильного окислителя. В пользу этого механизма косвенно свидетельствует отсутствие каталитической активности у $[Pt(Nb_6O_{19})_2]^{12-}$, у которого все координационные места заняты оксолигандами.

Реакция $Na_{10}[H_2W_{12}O_{42}]\cdot 27H_2O$ (или Na_2WO_4) с $[Rh_2(OAc)_4]$ в жёстких условиях (24 ч при $125^{\circ}C$) приводит к окислению Rh^{II} до Rh^{III} , в результате чего образуется оранжево-красный раствор. Медленное упаривание при комнатной температуре приводит к образованию красных кристаллов комплекса $Na_{12}[(Rh_4(\mu_3-O)_2(H_2O)_2)(H_2W_9O_{33})_2]\cdot 38H_2O$ (39) (строение аниона показано на рис. 4).

По данным ЦВА для водного раствора 39 в присутствии Na_2SO_4 как фонового электролита наблюдается полностью обратимая ($i_a=i_c$) одноэлектронная волна окисления с $E_{1/2}$ +0,683 B (относительно Ag / AgCl), которую можно отнести к паре Rh(III) / Rh(IV). В чистой воде эта волна становится необратимой с E_p +0,6 B (относительно Ag / AgCl). Появление анодного процесса при +1,1 B и резкое увеличение анодного тока при увеличении потенциала свидетельствует о каталитическом окислении воды. В холостом эксперименте каталитические токи отсутствуют вплоть до +1,6 B. Вероятным механизмом процесса является окисление координированной молекулы воды в координационной сфере Rh(IV); возможно, процессу непосредственно предшествует окисление ещё одного атома родия.

 $\textbf{Puc. 4}. \ \text{Строение аниона} \ [(Rh_4(\mu_3 - O)_2(H_2O)_2)(H_2W_9O_{33})_2]^{12-} \ (\textit{слева}) \ \text{и} \ [Ir^{IV}W_6O_{24}]^{8-} \ (\textit{справа}).$

В данной работе нами был получен и охарактеризован первый иридовольфрамат - $[Ir^{IV}W_6O_{24}]^{8-}$ (рис. 4), имеющий структуру Андерсона. С низким выходом он получался в реакции хлорида иридия (III) с Na_2WO_4 , наряду с большим количеством паравольфрамата $Na_{10}[H_2W_{12}O_{42}]\cdot 25H_2O$ в качестве основного продукта. Этот комплекс может быть также получен, с невысоким выходом, длительным нагреванием $K_2[IrF_6]$ с Na_2WO_4 в водном растворе при нейтральном рН. С приемлемым выходом он образуется в реакции конденсации *in situ* генерируемых гидроксокомплексов Ir^{IV} с вольфрамат-ионами в присутствии ацетата.

Нам впервые удалось координировать $\mathrm{Au^{III}}$ к $\mathrm{\Pi OM}$ (фосфовольфрамату), используя $[(\mathrm{CH_3})_2\mathrm{Au}(\mathrm{H_2O})_2]^+$ в качестве источника $\mathrm{Au^{III}}$. Мы показали, что, подобно uuc - $[\mathrm{Pt}(\mathrm{NH_3})_2\mathrm{Cl_2}]$, этот комплекс реагирует с $[\mathrm{PW}_{11}\mathrm{O_{39}}]^{7-}$, образуя $[\alpha\text{-PW}_{11}\mathrm{O_{39}}(\mathit{uuc}\text{-Au}(\mathrm{CH_3})_2)_2]^{5-}$, который был выделен и структурно охарактеризован в виде $\mathrm{Cs^+}$ соли $\mathrm{Cs_{3.5}}[\alpha\text{-H}_{1.5}\mathrm{PW}_{11}\mathrm{O_{39}}(\mathit{uuc}\text{-Au}(\mathrm{CH_3})_2)_2]\cdot 25\mathrm{H_2O}$ (47).

Смешанные ПОМ на основе металлов 5 и 6 групп

Смешанные ПОМ на основе W и V со структурой Линдквиста известны довольно давно. Оранжево-жёлтый $M'_4[W_4V_2O_{19}]\cdot nH_2O$ и жёлтый $M'_3[W_5VO_{19}]\cdot nH_2O$ (где M' – катион одновалентного металла) были выделены из стехиометрических смесей ванадата и вольфрамата. Анион $[W_4V_2O_{19}]^4$ стабилен в диапазоне pH 4–7, а при pH 3 превращается в $[W_5VO_{19}]^3$, который устойчив в диапазоне pH 1–4. Выше pH 4 он, в свою очередь, диспропорционирует на $[W_4V_2O_{19}]^4$ и смесь изополивольфраматов [28,29]. Шестиядерные анионы с более высоким отношением V:W неизвестны.

Смешение вольфрамата, ванадата и селенита в мольном соотношении 16: 3: 1 в кислой среде (рН 1,5–2,0) даёт раствор вишнёвого цвета, который содержит смесь разных ПОМ. ⁵¹V ЯМР-спектр показывает присутствие известных анионов типа Линдквиста $[W^{VI}_5 V^V O_{19}]^{3-}$ (-522 м.д.) и $uuc-[W^{VI}_4 V^V_2 O_{19}]^{4-}$ (-523 м.д.). Кроме того в спектре присутствует очень широкий сигнал между -530 и -590 м.д., который относится к смеси полианионов $[(Se^{IV}W^{VI}_x V^V_{9-x} O_{33})_2 (W^{VI}O(H_2O))(VO)_m]^{n-}$ с различными значениями x в трилакунарных фрагментах $\{SeW_x V_{9-x} O_{33}\}$. Реакционные растворы изучены методами ESI-MS, КЭ и ЭСП.

Кристаллическая структура $(NMe_4)_{4.83}[(SeW_{4.57}V_{4.43}O_{33})_2]$ (W(O)(H₂O))(VO)_{2.6}] · 10,57H₂O (49), выделенного из реакционного растворапосредством добавления NMe₄Br, представляет собой твёрдый раствор на основе анионов $[(Se^{IV}W^{VI}_{,V}V^{V}_{,9-x}O_{33})_2(W^{VI}O(H_2O))(VO)_m]^{n-}$ со средним атомным отношением W / V = 4,57 / 4,43. Два фрагмента [SeW $_{x}^{VI}V_{9-x}^{V}O_{33}$] координированы одной группой $\{W(O)(H_2O)\}^{4+}$ и двумя или тремя группами $\{V=O\}^{3+}$ через терминальные атомы кислорода. Позиции металлов в псевдотрилакунарных лигандах $\{Se^{IV}M_9O_{33}\}$ являются смешанными по V^V и W^{VI} , тогда как в экваториальных поясах позиции металла в $\{W(O)(H_2O)\}^{4+}$ и $\{V=O\}^{3+}$ заняты исключительно W и V. Позиция $\{W(O)(H_2O)\}^{4+}$ упорядочена, а позиции ванадильных групп разупорядочены таким образом, что можно предложить два типа ПОМ, сосуществующих в структуре: один содержит три группы $\{V=O\}^{3+}$ (60%) (тип $\{Se_2M_{22}\}$), а другой - две (периферийные) группы $\{V=O\}^{3+}$ (40%) (тип $\{Se_2M_{21}\}$), которые сокристаллизуются вместе из-за незначительной разницы в их геометрии.

Исследования системы $WO_4^{2-}/VO_3^{-}/SeO_3^{2-}$ в кислых водных растворах методами ESI-MS, капиллярного электрофореза, ЭСП и ЯМР показывают сложную динамику, которая включает в себя самосборку трилакунарных фрагментов $[SeW_{9-x}V_xO_{33}]^{n-}$ с высоким содержанием ванадия $(x \ge 5)$. Их эволюция

в растворе включает образование анионов сэндвичевого типа путём координации $\{WO\}^{4+}$ и $\{VO\}^{3+}$ групп. Эти анионы достаточно устойчивы и могут быть выделены. В течение больших периодов времени они распадаются, образуя смесь $[W_5VO_{19}]^{3-}$ и $[W_4V_2O_{19}]^{4-}$. В системе $WO_4^{\ 2-}$ / $VO_3^{\ -}$ / $SeO_3^{\ 2-}$ при pH 2 не наблюдается доминирующего образования крупных гетерометаллических ПОМ, как это происходит в системе $WO_4^{\ 2-}$ / $SeO_3^{\ 2-}$ [30].

Смешанные W/Nb ПОМ представляют отдельный интерес. Замещение вольфрама на ниобий увеличивает основность атомов кислорода ПОМ, при этом лиганды в координационной сфере ниобия обладают большей лабильностью, а за счёт возможности увеличения координационного числа атом ниобия в составе ПОМ может проявлять свойства кислоты Льюиса. В отличие от W(VI) в составе ПОМ, Nb(V) способен координировать пероксолиганд по η^2 -типу без разрушения структуры, что представляет интерес для катализа. Реакции между Nb-Ox и лакунарными анионами $[A-PW_9O_{34}]^{9-}$, γ - $[PW_{10}O_{36}]^{7-}$ и $[PW_{11}O_{30}]^{7-}$ проводили в воде путём добавления рассчитанного количества комплекса ниобия к раствору ПОМ и нагревания конечного раствора в течение 30 мин (80°С) при рН 3. Образование анионов $[PNb_xW_{12-x}O_{40}]^{n-}$ типа Кеггина в диапазоне мольных отношений H_3PO_4 : Nb-Ox: Na₂WO₄ = 1: n: 12-n, n = 1÷6 контролировали по ³¹Р ЯМР-спектрам. Спектры выявили образование $[PW_{11}O_{39}]^{7-}$ (-10,2 м.д.), $[PNbW_{11}O_{40}]^{4-}$ (-13,2 м.д.), изомеров $[PNb_2W_{10}O_{40}]^{5-}$ (от -11,6 до -12,0 м.д.) и $[PNb_3W_9O_{40}]^{6-}$ (от -10,3 до -11,3 м.д.) вкупе с присутствием свободного фосфата (0,7 м.д.).

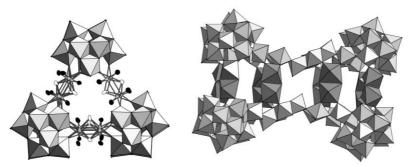
Самым простым и быстрым препаративным путем к [PNbW $_{11}O_{40}$] оказалась непосредственная реакция NH4[NbO(C $_2O_4$) $_2$ (H $_2O$) $_2$]·3H $_2O$ с H $_3$ [PW $_{12}O_{40}$]. Термостатирование (TBA) $_4$ H $_3$ [PW $_{11}O_{39}$] с Nb-Ox в течение 12 часов при 60°C в ДМФА также приводит к образованию [PNbW $_{11}O_{40}$] -.

Реакция Nb-Ox с натриевой солью [α -B-AsW₉O₃₃]⁹⁻ даёт несколько продуктов в зависимости от pH среды и концентрации реагентов. Добавление Me₂NH₂Cl к реакционной смеси, полученной после кипячения в течение 2 часов при pH 4, приводит к росту жёлтых кристаллов состава (Me₂NH₂)_{9,5}H_{0,7}[(AsW₉O₃₃)₂(NbO)_{2,6}(H₂O)]·6H₂O (55). Кристаллическая структура 55 состоит из анионов сэндвичевого типа, построенных из двух арсеновольфраматных фрагментов { α -B-AsW₉O₃₃}⁹⁻ и центрального пояса {NbO}₃. Поскольку занятость позиций одной из трёх {NbO}³⁺ групп составляет 0,6, структура может быть представлена как суперпозиция аниона [(AsW₉O₃₃)₂(NbO)₃(H₂O)]⁹⁻ с тремя центральными группами {NbO}³⁺ и аниона [(AsW₉O₃₃)₂(NbO)₂(H₂O)]¹²⁻ с двумя группами {NbO}³⁺ в центральном поясе. Добавление CsCl к охлаждённому реакционному раствору приводит к кристаллизации комплекса состава Cs₉[(AsW₉O₃₃)₂(NbO)₃(H₂O)]·20H₂O (56), в структуре которого позиции всех атомов центрального пояса упорядочены.

Реакция натриевой соли $\{\alpha\text{-B-SbW}_9\text{O}_{33}\}^{9-}$ с Nb-Ox при нагревании приводит к появлению жёлтой окраски. Добавление Me_4NBr и медленное упаривание раствора на воздухе приводят к образованию бесцветных кристаллов состава

 $(Me_4N)_7Na_4H[\{SbW_9O_{33}\}_2\{Nb(C_2O_4)\}_2]\cdot 35H_2O\cdot 0,4NaBr (57).$ Анион в 57 построен из двух трилакунарных фрагментов $\{\alpha\text{-B-SbW}_9O_{33}\}^{9\text{-}}$, которые, как в сэндвич, заключают две группы $\{Nb(C_2O_4)\}^{3\text{+}}$ вместо $\{NbO\}^{3\text{+}}$, как это наблюдалось в случае $[\alpha\text{-B-AsW}_9O_{33}]^{9\text{-}}$. Каждый атом ниобия имеет псевдооктаэдрическое координационное окружение, а его координационная сфера заполнена двумя атомами кислорода бидентатного оксалата (d(Nb-O)=2,13(2) Å), двух кислородных лигандов одного антимоновольфраматного фрагмента (d(Nb-O)=1,84(2) и 1,86(2) Å) и двух аксиальных кислородных лиганда второго $[\alpha\text{-B-AsW}_9O_{33}]^{9\text{-}}$ фрагмента на больших расстояниях (d(Nb-O)=1,97(2) Å).

Было изучено взаимодействие двух разных по катионному составу солей $[P_8W_{48}O_{184}]^{40-}$ $(K_{28}Li_5H_7[P_8W_{48}O_{184}]\cdot 92H_2O$ макроциклического аниона и $Li_{17}(NH_4)_{21}H_2[P_8W_{48}O_{184}]\cdot 85H_2O)$ с Nb-Ox. Реакции проводили в водном растворе при нагревании в течение двух часов. Были использованы разные мольные соотношения Nb-Ox / $\{P_8W_{48}\}$ (4:1, 8:1, 16:1) и разные концентрации для возможно более полного скрининга реакционных процессов. Анализ данных ЯМР, ВЭЖХ-ИСП-АЭС, SAXS, PCA указывает на образование смешанных Nb/W комплексов вплоть до $\{P_8W_{48}Nb_5\}$. В структуре $[P_8W_{48}O_{184}]^{40}$ имеется не менее восьми эквивалентных позиций для включения Nb и других переходных металлов, но катионы K⁺ и Li⁺ успешно конкурируют с Nb(V) и препятствуют включению более пяти атомов ниобия (К+ конкурирует успешнее, чем Li⁺). Даже при большом избытке Nb происходит включение не более пяти атомов Nb(V), занимающих случайным образом доступные координационные места. Помимо этого, небольшая часть Nb(V) включается в пентагональные позиции (к.ч. 7), которые не участвуют в координации катионов 3*d*-металлов (к.ч. 6). В растворах существует набор равновесий между преобладающими формами $\{P_8W_{48}Nb_4\}$ и $\{P_8W_{48}Nb_3\}$.


Супрамолекулярные взаимодействия между кластерами металлов 5/6 групп, ПОМ 6 группы и молекулами γ-CD

Процессы самосборки различных типов строительных блоков и последующей самоорганизации возникающих более сложных структур играют ключевую роль в химии ПОМ, приводя к почти необозримому структурному многообразию [31–33]. Эти процессы протекают как в водных, так и неводных средах, формируя различные классы ПОМ, принципиально отличающиеся как основными строительными блоками, так и возможностями функционализации. В водных растворах ключевым параметром является рН раствора, в то время как в неводных средах основными критериями являются соотношение реагентов и природа растворителя. В настоящей работе изучены процессы самосборки строительных блоков различной природы для получения гибридных ПОМ, содержащих халькогенидные и галогенидные кластерные фрагменты.

При подкислении водного раствора вольфрамата натрия, диоксида селена и аква-комплекса $\left[Mo_2O_2S_2(H_2O)_6\right]^{2+}$ до pH 3,5 он приобретает красную окраску,

типичную для комплексов $\{Mo_2O_2S_2\}^{2^+}$ с лакунарными полиоксовольфраматами [34]. Упаривание приводит к росту тёмно-красных кристаллов, которые были выделены и перекристаллизованы из 0,1 M NaCl. На основании данных элементного анализа, EDS и TГА была установлена полная формула полученного продукта $Na_{22}K_2[(\gamma-W_{14}Se_2O_{52})_3(Mo_2O_2(\mu-S)_2(H_2O)_2)_6]\cdot75H_2O$ (65). Соль 65 содержит треугольные макроциклические анионы $[(\gamma-W_{14}Se_2O_{52})_3(Mo_2O_2(\mu-S)_2(H_2O)_2)_6]^{2^+}$ (рис. 5) симметрии D_{3h} , соединённые катионами натрия в гофрированные слои. Анион имеет шесть мостиковых биядерных фрагментов $\{Mo_2O_2(\mu-S)_2(H_2O)_2\}^{2^+}$, соединяющих три селеновольфраматные единицы $\{\gamma-Se_2W_{14}O_{52}\}^{12^-}$, которые являются дефектными производными аниона типа Доусона $[Se_2W_{14}O_{52}]^{8^-}$. Конфигурация фрагментов $\{Se_2W_{14}\}$ соответствуют γ -изомеру и отличается от $\{\alpha-Se_2W_{14}\}$, описанного в [35-36] и фосфатного аналога $\{\alpha-P_2W_{14}O_{54}\}$, описанного Гозе и др. [37,38]

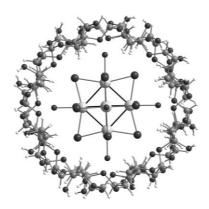

При смешении тех же реагентов при рН < 2,5 цвет раствора становится намного темнее. Медленное упаривание при рН 2 приводит к росту кристаллов $Na_{35}K_3H_2[(\gamma-Se_2W_{14}O_{52})_4(WO_3(H_2O))_8(W_2O_5)_2(W_4O_{13})_2(Mo_2O_2(\mu-Se_2W_{14}O_{13})_2(Mo_2O_2(\mu-Se_2W_{14}O_{13})_2(Mo_2O_2(\mu-Se_2W_{14}O_{13})_2(Mo_2O_2(\mu-Se_2W_{14}O_{13})_2(Mo_2O_2(\mu-Se_2W_{14}O_{13})_2(Mo_2O_2(\mu-Se_2W_{14}O_{13})_2(Mo_2O_2(\mu-Se_2W_{14}O_{13})_2(Mo_2O_2(\mu-Se_2W_{14}O_{13})_2(Mo_2O_2(\mu-Se_2W_{14}O_{13})_2(Mo_2O_2(\mu-Se_2W_{14}O_{13})_2(Mo_2O_2(\mu-Se_2W_{14}O_{13})_2(Mo_2O_2(\mu-Se_2W_{14}O_2($ $S_{2}(H_{2}O_{2})_{4}(Mo_{2}O_{2}(\mu-S)_{2}(SeO_{3}))_{4}]\cdot 120H_{2}O$ (66).Анион $[(\gamma - Se_2W_{14}O_{52})_4(WO_3(H_2O))_8(W_2O_5)_2(W_4O_{12})_2(Mo_2O_2(\mu - S)_2(H_2O)_2)_4(Mo_2O_2(\mu - S)_2(H_2O)_2)_4(Mo_2O_2(H_2O)_2(H_2O)_2)_4(Mo_2O_2(H_2O)_2(H_2O)_2)_4(Mo_2O_2(H_2O)_2(H_2O)_2)_4(Mo_2O_2(H_2O)_2(H_2O)_2)_4(Mo_2O_2(H_2O)_2(H_2O)_2)_4(Mo_2O_2(H_2O)_2(H_2O)_2)_4(Mo_2O_2(H_2O)_2(H_2O)_2)_4(Mo_2O_2(H_2O)_2(H_2O$ $S_{2}(SeO_{3})_{4}^{40-}$ (рис. 5) обладает размерами 3,0 × 2,2 нм. Он может быть представлен в виде комбинации 28 строительных блоков 6 различных типов: четырёх тетравакантных $\{\gamma$ -Se $_2$ W $_{14}$ O $_{52}\}$ фрагментов, восьми моновольфраматных групп $\{WO_3(H_2O)\}$, двух биядерных $\{W_2O_5\}$ единиц, двух тетравольфраматных $\{W_4O_{12}\}$ фрагментов, восьми кластеров $\{Mo_2O_2S_2\}$ двух типов, и четырёх дополнительных селенит-ионов. Основная часть состоит из четырёх тетравакантных $\{\gamma - \text{Se}_2 \text{W}_{14} \text{O}_{52}\}$ селеновольфраматных единиц, которые координиру- $\{Mo_2O_2(\mu_2-S)_2(H_2O)_2\}^{2+}$ оксотиокатиона ют внешних и два моновольфраматных фрагмента $\{WO_3(H_2O)\}$.

Рис. 5. Строение аниона $[(\gamma-W_{14}Se_2O_{52})_3(Mo_2O_2(\mu-S)_2(H_2O)_2)_6]^{24}$ (слева) и $[(\gamma-Se_2W_{14}O_{52})_4(WO_3(H_2O))_8(W_2O_5)_2(W_4O_{12})_2(Mo_2O_2(\mu-S)_2(H_2O)_2)_4(Mo_2O_2(\mu-S)_2(SeO_3))_4]^{40}$ (справа).

Поскольку нам не удалось выделить комплексы ПОМ с галогенидными кластерами (на примере $[Ta_6Br_{12}(H_2O)_6]^{2+}$) путем прямой координации, одной из целей данного исследования являлась разработка рационального дизайна супрамолекулярных ассоциатов как в бинарных системах, отдельно между γ -CD / $[P_2W_{18}O_{62}]^{6-}$ и γ -CD / $\{Ta_6\}$, так и в трёхкомпонентной системе на основе строительных блоков. Систематические в этом направлении начались с изучения взаимодействий между $[P_2W_{18}O_{62}]^{6-}$ и у-CD в различных мольных соотношениях и с использованием разных катионов, что позволяет оптимизировать растворимость ассоциатов $[P_2W_{18}O_{62}]^{6-}$ / у-СD и улучшить качество кристаллических продуктов. Были выделены три кристаллические структурно охарактеризованы фазы $KNa_{5}[P_{2}W_{18}O_{62}](\gamma-CD)\cdot 3.5NaCl\cdot 23H_{2}O$ $(\Pi OM@CD),$ $CsNa_{5}[P_{2}W_{18}O_{62}]\cdot(\gamma-$ CD) $_{2}\cdot 1.2$ NaCl $\cdot 23$ H $_{2}$ O (ПОМ@2CD), и Rb $_{4}$ K $_{1.5}$ Na $_{0.5}$ [P $_{2}$ W $_{18}$ O $_{62}$] (γ -CD) $_{3}\cdot 35$ H $_{2}$ O (ПОМ@3CD). Во всех случаях полиоксоанионы взаимодействуют с малым ободом молекул циклодекстрина.

Катионный кластер $[Ta_6Br_{12}(H_2O)_6]^{2+}$ показал высокую склонность к формированию супрамолекулярного комплекса (типа гость-хозяин) с γ -циклодекстрином состава 1:2 $\{Ta_6Br_{12}(H_2O)_6@2CD\}^{2+}$ (Рис. 5) независимо от исходного соотношения $\{Ta_6\}$ / γ -CD. Формирование аддукта происходит почти количественно в водном растворе, содержащем стехиометрические количества γ -CD и кластера. Продукт кристаллизуется в виде зелёных пластинчатых кристаллов состава $[Ta_6Br_{12}(H_2O)_6]\cdot(\gamma$ -CD) $_2Br_2\cdot14H_2O$ ($\{Ta_6\}$ @2CD). В структуре супрамолекулярного катиона большие ободы молекул циклодекстрина ориентированы друг к другу, что позволяет рассматривать его как дитопический катион-линкер.

Рис. 6. Строение супрамолекулярного катиона $\{[Ta_6Br_{12}(H_2O)_6]@(\gamma-CD)_2\}^{2+}$.

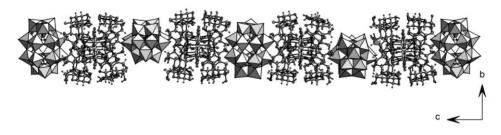


Рис. 7. Кристаллическая структура ({Таб@2CD·POM}, полученная с использованием СИ.

 $2 \cdot 10^{-2} \text{ M}$ смешивании При водных растворов ${Ta_6Br_{12}(H_2O)_6@2CD}Br_2\cdot 14H_2O$ и $K_6[P_2W_{18}O_{62}]\cdot 19H_2O$ первоначальный зеленоватый раствор становится вязким, вплоть до полного гелеобразования в течение нескольких минут. Формирование гидрогеля указывает на супрамолекулярное взаимодействие, которое приводит к полимеризации, включающей дитопический катион-линкер и анион ПОМ. При этом, согласно данным РФА, гидрогель имеет упорядоченную структуру. Этот результат указывает на возможность получения монокристаллов образующегося комплекса методом медленной диффузии компонентов навстречу друг другу. Действительно, диффузия 2·10⁻² М водных растворов реагентов приводит к росту зелёных кристаллов, РСА и элементный анализ которых дают состав, отвечающий формуле $K_2\{[Ta_6Br_{12}(H_2O)_6]@(\gamma-CD)_2\}[H_2P_2W_{18}O_{62}]\cdot 32,5H_2O$ (рис. 7). Таким образом, впервые реализована трёхкомпонентная гибридная супрамолекулярная система, построенная на основе специфического распознавания, с использованием полиоксометаллата – акцептора электронов $[P_2W_{18}O_{62}]^{6-}$, катионного кластера $[Ta_6Br_{12}(H_2O)_6]^{2+}$ – потенциального донора электронов и медиатора уциклодекстрина. Агрегация этих компонентов в твёрдом теле доказана с помощью РСА, в растворе – с использованием современных методических приёмов ЯМР (включая DOSY, EXSY и COZY), ESI-MS и ЭСП, ЦВА, а также экспериментов по изотермическому калориметрическому титрованию. Работы в этом направлении активно ведутся в настоящее время в рамках LIA CLUSPOM.1

Таким образом, сродство октаэдрических кластеров и у-циклодекстрина можно использовать для построения разнообразных сложноорганизованных систем и управлять их люминесцентными, редокс или биологическими свойствами.

¹ В качестве независимого ответвления этой части работы с участием автора, вне рамок данной диссертации, формирование супрамолекулярных комплексов типа гость-хозяин в системе октаэдрический кластер / γ -циклодекстрин позволило открыть класс соединений такого типа на основе октаэдрических галогенидных и халькогенидных кластеров ниобия, тантала, молибдена, вольфрама и рения. Соответствующие супрамолекулярные комплексы типа "гость-хозяин" [M₆Cl₈Cl₆]@ γ -CD (M = Mo, W), {[{Re₆S₈}(H₂O)₆]@[γ -CD]}(NO₃)₂·12H₂O [39] и [Re₆Q₈(CN)₆]⁴·@2 γ -CD (Q = S, Se, Te) будут описаны в кандидатской диссертации А.А. Иванова (ИНХ СО РАН).

Химия ПОМ в неводных средах: координация и перегруппировки

В данной части работы наше внимание было сфокусировано на изучении координационной способности классических анионов типа Кеггина и Доусона по отношению к ряду переходных и постпереходных металлов. В случае ионов постпереходных металлов, Pb²⁺ и Bi³⁺, образующиеся структуры отличаются чрезвычайной лабильностью и чувствительностью ко многим факторам. Небольшие изменения условий кристаллизации приводят к образованию 1D координационных полимеров разных топологий из системы $H_4[SiW_{12}O_{40}]/Pb^{2+}/ДМФА$: $[Pb_2(\mu_2-\mu_3)]/Pb^{2+}/ДMФА$ $DMF_{2}(DMF)_{8}(SiW_{12}O_{40})]$ или $[Pb_{2}(\mu_{2}-DMF)_{2}(DMF)_{8}(SiW_{12}O_{40})]\cdot DMF$. В тоже время анион Доусона $[P_2W_{18}O_{62}]^{6-}$ образует координационный полимер $[(Pb(\mu_2-\mu_3))^{6-}]^{6-}$ $DMF_{3}(DMF_{6})(Pb(DMF_{6})(P_{2}W_{18}O_{62})]\cdot 0.5DMF\cdot 1.3H_{2}O.$ Из-за различий в плотности заряда на атомах кислорода ПОМ было обнаружено заметное различие в координации $[PW_{12}O_{40}]^{3-}$ и $[SiW_{12}O_{40}]^{4-}$ к Bi^{3+} в ДМФА. Только силиковольфрамат способен непосредственно связывать Bi³⁺, тогда как фосфовольфрамат предпочитает образование ионных пар, разделённых молекулами растворителя, стабилизируя ранее неизвестный катион $[Bi(DMF)_8]^{3+}$. В аналогичных условиях ионы 3dметаллов более склонны к взаимодействию с молекулами растворителя, чем с Π OM. Для Zn^{2+} наблюдается образование ДКС как в случае $[SiW_{12}O_{40}]^{4-}$ $([Zn(DMF)_6]_2[SiW_{12}O_{40}]\cdot 2H_2O),$ лля $([Zn(H_2O)_2(DMF)_4][Zn(DMF)_6]_2[PW_{12}O_{40}]_2$ 6DMF). Принимая во внимание, что $[PNbW_{11}O_{40}]^{4-}$ имеет тот же заряд, что и силиковольфрамат, были изучены реакции фосфониобовольфрамата с Co^{2+} в ДМФА и Ni^{2+} в растворе CH_3CN . Однако в обоих случаях наблюдалось образование двойных комплексных солей $[Co(DMF)_6]_2[PW_{11}NbO_{40}]\cdot 2,6DMF$ и $[Ni(CH_3CN)_5L]_2[PW_{11}NbO_{40}]\cdot 1,7CH_3CN$ без прямой координации катиона к полиоксоаниону. Диффузия паров эфира в раствор ДМФА, $(Bu_4N)_4[PNbW_{11}O_{40}]$ Pb^{2+} . содержащий кристаллов $[Pb_2(\mu_2\text{-DMF})_3(DMF)_8][PW_{11}NbO_{40}]\cdot DMF.$ игольчатых По данным РСА, в структуре комплекса наблюдается непосредственная координация Pb²⁺ к терминальному оксолиганду, однако в силу особенностей строения позиции вольфрама и ниобия нельзя точно разделить.

Таким образом, из серии Pb^{2+} , Bi^{3+} , Co^{2+} , Ni^{2+} , Zn^{2+} непосредственная координация к поверхности нелакунарных полиоксоанионов наблюдалась только в случае Pb^{2+} и Bi^{3+} .

В заключении диссертации излагаются итоги исследования и перспективы разработки темы, связанные с изучением процессов самоорганизации в неводных растворителях, синтезом новых комплексов с благородными металлами и получением материалов на основе специфического межмолекулярного распознавания.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

1) Развиты новые синтетические подходы в химии гексаниобатов и гексатанталатов. Предложены методы синтеза новых комплексов полиоксометаллатов

- с благородными металлами. Найдены примеры спонтанного образования иерархически организованных наноразмерных комплексов на основе ПОМ.
- 2) Установлена способность гексаниобата к структурным трансформациям в присутствии теллуратов, силикатов и ванадатов. Реакция гексаниобат-аниона и теллуровой кислоты в водном растворе приводит к селективному введению только одного атома теллура в структуру шестиядерного аниона. В реакции $[\mathrm{Nb}_6\mathrm{O}_{19}]^{8-}$ с источниками силиката образуется $[\mathrm{Si}_4\mathrm{Nb}_{16}\mathrm{O}_{56}]^{16-}$, который далее претерпевает перестройку в анион типа Кеггина $[\mathrm{SiNb}_{12}\mathrm{O}_{40}]^{16-}$. Реакция $[\mathrm{Nb}_6\mathrm{O}_{19}]^{8-}$ с ванадатом приводит к разным продуктам в зависимости от катиона. При использовании натриевой соли гексаниобата образуется "двухшапочный" анион типа Кеггина $[\mathrm{VNb}_{12}\mathrm{O}_{40}\{\mathrm{NbO}(\mathrm{CO}_3)\}_2]^{13-}$; в случае калиевой соли происходит образование $[\mathrm{K}@\mathrm{V_x}\mathrm{Nb}_{24}\mathrm{O}_{76}]^{n-}$ с разным числом атомов ванадия (3 и 4) в тетраэдрических полостях.
- 3) Реализована координация катионных металлоорганических фрагментов $\{(C_6H_6)Ru\}^{2+}$ и $\{Cp*M\}^{2+}$ (M = Rh, Ir) к гексаниобатам и гексатанталатам. Продемонстрирована способность додеканиобатных гетерополианионов со структурой типа Кеггина выступать в качестве лигандов. Впервые для наблюдения за поведением таких гибридных комплексов в растворе использованы 1H DOSY ЯМР и капиллярный электрофорез. Обнаружена и исследована обратимая димеризация гексаметаллатов, индуцированная координацией металлоорганических фрагментов.
- 4) Впервые предложен метод анализа сложных смесей ПОМ как в кислых, так и в щелочных средах на основе комбинации двух методов ВЭЖХ и ИСП-АЭС. Проанализировано поведение в водных растворах смешанных ПОМ 5 и 6 групп и комплексов ПОМ с благородными металлами. Установлена последовательность замещения атомов ниобия на атомы вольфрама при взаимодействии гексаниобата и теллуропентаниобата с вольфрамовой кислотой. Доказано существование фосфониобомолибдатов.
- **5**) Впервые охарактеризованы полиниобаты платины(IV). Найдены условия включения $\{Ru(NO)\}^{3+}$ и $\{Rh_4O_2\}^{8+}$ в структуру ПОМ. Впервые осуществлена координация золота к ПОМ в виде аниона $[\alpha\text{-PW}_{11}O_{39}(\mu\nu c\text{-Au}(CH_3)_2)_2]^{5-}$. Показано, что комплексы $Cs_2K_{10}[Nb_6O_{19}\{Pt(OH)_2\}]_2\cdot 13H_2O$ и $Na_{12}[(Rh_4(\mu_3-O)_2(H_2O)_2)(H_2W_9O_{33})_2]\cdot 38H_2O$ проявляют электрокаталитическую активность в процессе окисления воды.
- **6)** Установлена сложная динамика образования и эволюции смешанных ПОМ, которая приводит к трилакунарным фрагментам $[SeW_{9-x}V_xO_{33}]^{n-}$ с высоким содержанием ванадия (x > 5) в системе $WO_4^{2-}/VO_3^{-}/SeO_3^{2-}$.
- 7) Оксалатный комплекс $(NH_4)[NbO(C_2O_4)_2(H_2O)_2]\cdot 3H_2O$ предложен в качестве удобного источника ниобия для синтеза смешанных ПОМ. Исследованы его реакции с лакунарными ПОМ. Разработаны методы синтеза ниобийзамещённых анионов типа Кеггина $[XW_{11}NbO_{40}]^{n-}$ (X = P, Ge, B). Реакции $[NbO(C_2O_4)_2(H_2O)_2]^-$ с $[\alpha\text{-B-}XW_9O_{33}]^9$ (X = As, Sb) приводят к образованию различных анионов сэндви-

чевого типа. Показано включение Nb в анионный макроциклический кавитанд $\left[P_8W_{48}O_{184}\right]^{40-}$.

- 8) В зависимости от pH реакционной среды самосборка ПОМ на основе селеновольфраматных, изополивольфраматных и халькогенидных кластерных фрагментов $\{Mo_2O_2S_2\}^{2+}$ приводит либо к $[(\gamma\text{-Se}_2W_{14}O_{52})_3(Mo_2O_2(\mu\text{-S})_2(H_2O)_2)_6]^{2+}$ (pH 3,5), либо к $[(\gamma\text{-Se}_2W_{14}O_{52})_4(WO_3(H_2O))_8(W_2O_5)_2(W_4O_{13})_2(Mo_2O_2(\mu\text{-S})_2(H_2O)_2)_4(Mo_2O_2(\mu\text{-S})_2(SeO_3))_4]^{40-}$ (pH 2). Получены уникальные примеры спонтанного образования иерархически организованных наноразмерных супрамолекулярных комплексов на основе ПОМ 6 группы, кластеров 5 и 6 групп и молекул γ -циклодекстрина. Исследование формирования супрамолекулярных комплексов типа гость-хозяин в системе октаэдрический кластер / γ -циклодекстрин позволило открыть новый класс соединений такого типа для октаэдрических кластеров.
- 9) Изучены координационные способности классических анионов типа Кеггина и Доусона по отношению к ряду переходных и постпереходных металлов:
 - а) в случае ионов Pb^{2+} и Bi^{3+} , показано образование как координационных полимеров, так и островных структур;
 - б) различие в заряде аниона обуславливает заметное различие в координации Bi^{3+} к $[\mathrm{PW}_{12}\mathrm{O}_{40}]^{3-}$ и $[\mathrm{SiW}_{12}\mathrm{O}_{40}]^{4-}$;
 - в) продемонстрирована прямая координация Pb^{2+} к аниону $[PNbW_{11}O_{40}]^{4-}$;
 - г) ионы 3d-металлов (Zn^{2+} , Co^{2+} , Ni^{2+}) более склонны к взаимодействию с растворителями, чем с ПОМ, что приводит к образованию двойных комплексных солей с $[SiW_{12}O_{40}]^{4-}$, $[PW_{12}O_{40}]^{3-}$, $[PNbW_{11}O_{40}]^{4-}$.

Основное содержание диссертации изложено в следующих работах:

- 1. Sokolov M.N., Adonin S.A., Abramov P.A., Mainichev D.A., Zakharchuk N.F., Fedin V.P. Self-Assembly of Polyoxotungstate with Tetrarhodium-Oxo Core: Synthesis, Structure and ^{183}W NMR Studies // Chem. Commun. 2012. V. 48, No 53. P. 6666-6669.
- 2. Sokolov M.N., Adonin S.A., Peresypkina E.V., Abramov P.A., Smolentsev A.I., Potemkin D.I., Snytnikov P.V., Fedin V.P. Reactions of Rhodium (II) Acetate with Non-Lacunary Keggin and Dawson Polyoxoanions and Related Catalytic Studies // Inorg. Chim. Acta. 2013. V. 394. P. 656-662.
- 3. Udalova L.I., Adonin S.A., Abramov P.A., Korolkov I.V., Yunoshev A.S., Plyusnin P.E., Sokolov M.N. Complexes of Non-Lacunary Keggin- and Dawson-Type Polyoxometalates with Pb(II): Formation of 1D Coordination Polymers with Different Bonding Modes // New J. Chem. 2016. V. 40, No 12. P. 9981-9985.
- 4. Bushmeleva E.P., Kompankov N.B., Shiriyazdanov R.R., Karimova A.R., Abramov P.A., Sokolov M.N. Chemistry of $[PW_{11}NbO_{40}]^{4-}$: Structural Rearrangement and Metal Coordination // Inorg. Chem. Commun. 2018. V. 98. P. 180-183.
- 5. Shmakova A.A., Akhmetova M.M., Volchek V.V., Romanova T.E., Korolkov I., Sheven D.G., Adonin S.A., Abramov P.A., Sokolov M.N. A HPLC-ICP-AES Tech-

- nique for the Screening of $[XW_{11}NbO_{40}]^{n-}$ Aqueous Solutions // New J. Chem. 2018. V. 42, No 10. P. 7940-7948.
- 6. Abramov P.A., Romanova T.E., Volchek V.V., Mukhacheva A.A., Kompankov N.B., Sokolov M.N. Combined HPLC-ICP-AES Technique as an Informative Tool for the Study of Heteropolyniobates // New J. Chem. 2018. V. 42, No 10. P. 7949-7955.
- 7. Mukhacheva A.A., Volchek V.V., Abramov P.A., Sokolov M.N. Blocking $\{RhCl\}^{2^+}$ Disorder in the Crystal Structure of a $[SiW_{11}O_{39}\{RhCl\}]^{6^-}$ Salt: Direct Localization of the Heterometal in a Monosubstituted Keggin Anion // Inorg. Chem. Commun. -2018.-V.89.-P.10-12.
- 8. Mukhacheva A.A., Adonin S.A., Abramov P.A., Sokolov M.N. Different Behavior of Bi^{3+} to $\left[XW_{12}O_{40}\right]^{n-}$ (X = P, Si, n = 3, 4) // Polyhedron. 2018. V. 141. P. 393-397.
- 9. Moussawi M.A., Leclerc-Laronze N., Floquet S., Abramov P.A., Sokolov M.N., Cordier S., Ponchel A., Monflier E., Bricout H., Landy D., Cadot E. Polyoxometalate, Cationic Cluster, and γ -Cyclodextrin: From Primary Interactions to Supramolecular Hybrid Materials // J. Am. Chem. Soc. 2017. V. 139, No 36. P. 12793-12803.
- 10. Shmakova A.A., Glebov E.M., Korolev V.V., Stass D.V., Benassi E., Abramov P.A., Sokolov M.N. Photochromism in Oxalatoniobates // Dalton Trans. 2018. V. 47, No 7, P. 2247-2255.
- 11. Abramov P.A., Sokolov M.N., Floquet S., Haouas M., Taulelle F., Cadot E., Peresypkina E.V., Virovets A.V., Vicent C., Kompankov N.B., Fedin V.P. Coordination-Induced Condensation of $[Ta_6O_{19}]^8$: Synthesis and Structure of $[\{(C_6H_6)Ru\}_2Ta_6O_{19}]^4$ and $[\{(C_6H_6)RuTa_6O_{18}\}_2(\mu\text{-O})]^{10\text{-}}$ // Inorg. Chem. 2014. V. 53, No 24. P. 12791-12798.
- 12. Abramov P.A., Sokolov M.N., Virovets A.V., Floquet S., Haouas M., Taulelle F., Cadot E., Vicent C., Fedin V.P. Grafting $\{Cp*Rh\}^{2+}$ on the Surface of Nb and Ta Lindqvist-Type POM // Dalton Trans. -2015.-V.44, No 5.-P.2234-2239.
- 13. Abramov P.A., Vicent C., Kompankov N.B., Gushchin A.L., Sokolov M.N. Coordination of $\{C_5Me_5Ir\}^{2^+}$ to $[M_6O_{19}]^{8^-}$ (M = Nb, Ta) Analogies and Differences between Rh and Ir, Nb and Ta // Eur. J. Inorg. Chem. 2016. V. 2016, No 1. P. 154-160.
- 14. Abramov P.A., Vicent C., Kompankov N.B., Gushchin A.L., Sokolov M.N. Platinum Polyoxoniobates // Chem. Commun. -2015.-V.51, No 19.-P.4021-4023.
- 15. Abramov P.A., Zemerova T.P., Moroz N.K., Kompankov N.B., Zhdanov A.A., Tsygankova A.R., Vicent C., Sokolov M.N. Synthesis and Characterization of $[(OH)TeNb_5O_{18}]^{6-}$ in Water Solution, Comparison with $[Nb_6O_{19}]^{8-}$ // Inorg. Chem. -2016.-V.55, No 4.-P.1381-1389.
- 16. Abramov P.A., Davletgildeeva A.T., Moroz N.K., Kompankov N.B., Santiago-Schübel B., Sokolov M. N. Cation-Dependent Self-Assembly of Vanadium Polyoxoniobates // Inorg. Chem. 2016. V. 55, No 24. P. 12807-12814.

- 17. Abramov P.A., Davletgildeeva A.T., Sokolov M.N. Formation of Silicon-Containing Polyoxoniobates from Hexaniobate Under High Temperature Conditions // J. Clust. Sci. 2017. V. 28, No 2, P. 735-744.
- 18. Abramov P.A., Zemerova T.P., Sokolov M.N. Crystal Structure of $Cs_4[\{(C_6H_6)Ru\}_2Nb_6O_{19}]\cdot 8MeOH\cdot 2H_2O$. Structural Overview of Hybrid Organometallic Hexametalates of Niobium and Tantalum: Alkali Metal Coordination Behavior // J. Clust. Sci. -2017. -V. 28, No 2. -P. 725-734.
- 19. Shmakova A.A., Shiriyazdanov R.R., Karimova A.R., Kompankov N.B., Abramov P.A., Sokolov M.N. Decay of Hexaniobate Complexes of Mn(IV) and Pt(IV) in Alkaline Solutions: Some New Hexaniobate Salts // J. Clust. Sci. 2018. V. 29, No 6. P. 1201-1207.
- 20. Abramov P.A., Akhmetova M.M., Romanova T.E., Bogomyakov A.S., Fedin M.V., Sokolov M.N. Behavior of Mn^{IV} in the Hexaniobate, Telluropentaniobate and Hexatantalate Solutions // Inorg. Chim. Acta. -2018.-V.473.-P.268-274.
- 21. Abramov P.A., Peresypkina E.V., Izarova N.V., Vicent C., Zhdanov A.A., Kompankov N.B., Gutsul T., Sokolov M.N. Polyoxoanions Assembled by the Condensation of Vanadate, Tungstate and Selenite: Solution Studies and Crystal Structures of the Mixed Metal Derivatives (NMe₄)₂Na₂[W^{VI}₄V^V₂O₁₉]·8H₂O and (NMe₄)_{4.83}[(Se^{IV} W^{VI}_{4.57}V^V_{4.43}O₃₃)₂(W^{VI}(O)(H₂O))(V^VO)_{2.6}]·10.57H₂O // New J. Chem. 2016. V. 40, No 2. P. 937-944.
- 22. Moussawi M.A., Floquet S., Abramov P.A., Vicent C., Haouas M., Cadot E. Ph-Controlled One Pot Syntheses of Giant $Mo_2O_2S_2$ -Containing Seleno-Tungstate Architectures // Inorg. Chem. -2018.-V.57, No 1.-P.56-63.
- 23. Adonin S.A., Izarova N.V., Besson C., Abramov P.A., Santiago-Schübel B., Kögerler P., Fedin V.P., Sokolov M.N. An ${\rm Ir}^{\rm IV}$ -Containing Polyoxometalate // Chem. Commun. 2015. V. 51, No 7. P. 1222-1225.
- 24. Abramov P.A., Shmakova A.A., Haouas M., Fink G., Cadot E., Sokolov M.N. Self-Assembly of $[PNb_xW_{12-x}O_{40}]^{n-}$ Keggin Anions a Simple Way to Mixed Nb–W Polyoxometalates // New J. Chem. 2017. V. 41, No 1. P. 256-262.
- 25. Abramov P.A., Vicent C., Kompankov N.B., Laricheva J.A., Sokolov M.N. Unique Solubility of Polyoxoniobate Salts in Methanol: Coordination to Cations and POM Methylation // RSC Adv. -2016. V. 6, No 24. P. 20240-20246.
- 26. Shuvaeva O.V., Zhdanov A.A., Romanova T.E., Abramov P.A., Sokolov M.N. Hyphenated Techniques in Speciation Analysis of Polyoxometalates: Identification of Individual $[PMo_{12-x}V_xO_{40}]^{-3-x}$ (x=1-3) in the Reaction Mixtures by High Performance Liquid Chromatography and Atomic Emission Spectrometry with Inductively Coupled // Dalton Trans. -2017.-V.46, No 11.-P.3541-3546.
- 27. Абрамов П.А., Компаньков Н.Б., Соколов М.Н. Na_4 [транс- $\{Cp*Rh\}_2Ta_6O_{19}$] \cdot 24 H_2O : синтез, структура, поведение в растворе // Коорд. химия. 2016. Т. 42. С. 277-281.
- 28. Абрамов П.А., Соколов М.Н. Кристаллическая структура $Na_{10}[\{Na(H_2O)H_2Nb_6O_{19}\}_2(\mu-H_2O)_2]\cdot 46H_2O$ // Журн. структ. химии. 2017. Т. 58. С. 1450-1456.

- 29. Абрамов П.А., Соколов М.Н. Координационная химия полиниобатов и танталатов // Коорд. химия. -2017.-T.43.-C.387-398.
- 30. Шмакова A.A., Волчек В.В., Абрамов П.А., Соколов М.Н. Реакция $K_2[Ru(NO)Cl_5]$ с $K_8[\gamma-SiW_{10}O_{36}]$ в гидротермальных условиях: синтез $[SiW_{11}O_{39}\{Ru(NO)\}]^{5-}$ // Журн. структ. химии. 2018. Т. 59. С. 1480-1485.
- 31. Удалова Л.И., Адонин С.А., Абрамов П.А., Корольков И.В., Соколов М.Н. Zn-содержащие двойные комплексные соли полиоксовольфраматов типа Кеггина: синтез и кристаллическая структура // Коорд. химия. 2017. Т. 43. С. 352-356.
- 32. Абрамов П.А., Абрамова А.М., Пересыпкина Е.В., Гущин А.Л., Адонин С.А., Соколов М.Н. Новая соль полиоксотанталата $Na_8[Ta_6O_{19}]\cdot 24,5H_2O$ и ее свойства // Журн. структ. химии. 2011. Т. 52. С. 1038-1042.
- 33. Abramov P.A., Sokolov M.N. Verified existence of Keggin-type $[PV_{12}O_{40}]^{15}$ and grafting $\{(C_6H_6)Ru\}$, $\{Cp*Rh\}$ on $[M_6O_{19}]^{8}$ (M=Nb, Ta) // FMOCS 2012, 18^{th} - 22^{nd} November 2012, Lanzarote, Spain.
- 34. Абрамов П.А. Гибридные полиоксометалаты Nb и Ta, содержащие металлоорганические комплексы Ru и Rh // XX Черняевская конференция по химии, аналитике и платиновых металлов, 7-12 Октября 2013 г., Красноярск, Россия, С. 19.
- 35. Abramov P.A. Hybrid organometallic Polyoxometalates of Nb and Ta // ICFM 2013, Новосибирск, Россия, С. 44.
- 36. Abramov P.A. New hybrid Nb and Ta polyoxometalates functionalized with organometallic complexes // International conference "Organometallic and Coordination Chemistry: Fundamental and Applied Aspects", September 1-6, 2013, N. Novgorod, Russia, Y 1.
- 37. Абрамов П.А. Полиоксометаллаты V, Nb, Та. Новое направление в химии полиоксометаллатов // III Конференция молодых ученых по общей и неорганической химии, 16-18 апреля 2013 г., Москва, С. 3.
- 38. Abramov P.A. Nb and Ta polyoxometalates new ligands in the chemistry of noble metals // XXVI Международная Чугаевская конференция по координационной химии, 6-10 октября 2014 г., Казань, Россия, С. 77.
- 39. Абрамов П.А. Полиоксокомплексы Nb и Ta новые горизонты // ICFM 2015, 5-9 октября 2015 г., Бердск, Россия, С.41.
- 40. Abramov P.A., Sokolov M.N. Iridium containing polyoxoniobates and tantalates // International conference "Organometallic and Coordination Chemistry: Achievements and Challenges", September 18-23, 2015, N. Novgorod, Russia, Y 1.
- 41. Abramov P.A., Sokolov M.N. Noble metals containing polyoxoniobates // 2015 International Chemical Congress of Pacific Basin Societies, December 15 20, 2015, Honolulu, Hawaii, USA, ENRG 643.
- 42. Abramov P.A. Organometallic fragments as building blocks for clusters and markers for polyoxometalate chemistry // CLUSPOM-1, June 29^{th} July 3^d 2016, Renn, France.

- 43. Abramov P.A., Sokolov M.N., Cadot E., Floquet S. From giant chalcoPOMs to giant polyoxoniobates // Frontiers in Metal-Oxide Cluster Science Symposium & European conference "Polyoxometalate Chemistry for Molecular Nanoscience", 10-14th July, 2016, Newcastle, Great Britain, C19.
- 44. Abramov P.A. Noble metals containing polyoxoniobates // Семинар с международным участием в рамках программы "CLUSPOM-1" 30 мая -3 июня 2016 г Алтайский район, пос. Катунь, Россия. С. б.
- 45. Sokolov M.N., Abramov P.A., Anyushin A.V. New polyoxometalate complexes of noble metals // Frontiers in Metal-Oxide Cluster Science Symposium & European conference "Polyoxometalate Chemistry for Molecular Nanoscience", 10th-14th July, 2016, Newcastle, Great Britain, K11.
- 46. Abramov P.A. Some features of polyoxoniobates and tantalates chemistry // ICFM 2017, Новосибирск, Россия, С. 33.
- 47. Abramov P.A., Sokolov M.N., Cadot E. Inclusion compounds based on octahedral clusters and γ -cyclodextrin // XVIth International Seminar on Inclusion Compounds IIIrd Youth School on Supramolecular and Coordination Chemistry, June 26-30, 2017, Kazan, Russia, O 9.
- 48. Abramov P.A. Synthesis and solution behavior of a series of group 5 and group 6 polyoxometalates // FMOCS V 2017, 20th-24th August 2017, Changchun, China, P. 50.
- 49. Sokolov M.N., Abramov P.A. Taking a stroll with polyoxoniobates across the Periodic system: repetitive patterns and diversity // FMOCS V 2017, 20th-24th August 2017, Changchun, China, P. 25.
- 50. Abramov P.A., Romanova T.E., Sokolov M.N. New methods for solution studies of group 5 and 6 polyoxometalates // 27th International Chugaev Conference on Coordination Chemistry, October 2–6, 2017, Nizhny Novgorod, Russia, O 71.
- 51. Sokolov M.N., Abramov P.A. Polyniobates: emerging ligands. a walk through the periodic system // 27th International Chugaev Conference on Coordination Chemistry, October 2–6, 2017, Nizhny Novgorod, Russia, PL 21.
- 52. Abramov P.A., Sokolov M.N. Polyoxometalates as multifunctional platform for chemical engineering // InorgChem 2018, 16 -21 сентября 2018 г, Астрахань, Россия, С. 34.
- 53. Abramov P.A. Oxalate vs POMs // CLUSPOM 2018, 5^{th} - 8^{th} June 2018, Gif, France, O1.

Список цитируемой литературы:

- [1]. Flynn Jr., C. M.; Stucky, G. D. Sodium 6-Niobo (Ethylenediamine) Cobaltate(III) and Its Chromate(III) Analog // *Inorg. Chem.* 1969. 8 (1). P. 178-180.
- [2]. Jander, G.; Schulz, H. Über Amphotere Oxydhydrate, Deren Alkalische Lösungen Und Feste Salze (Isopolysäuren Und Isopolysaure Salze). II. Mitteilung: Die Tantalsäure Und Einige Ihrer Alkalitantalate // Z. Anorg. Allg. Chem. 1925. 144 (1). P. 225-247.
- [3]. Jander, G.; Ertel, D. Über Tantalsäure Und Die Wasserlöslichen Alkalitantalate // J. Inorg. Nucl. Chem. 1956. 3 (2). P. 139-152.
- [4]. Nelson, W. H.; Tobias, R. S. Structure of the Polyanions of the Transition Metals in Aqueous Solution: The Hexatantalate // *Inorg. Chem.* 1963. 2 (5). P. 985-992.

- [5]. Hoppe, R.; Wehrum, G. Zur Kenntnis "Kationen-Reicher" Tantalate Und Niobate Uber Na₅TaO₅ Und Na₅NbO₅ // Z. Anorg. Allg. Chem. 1992. 614 (8). P. 38-46.
- [6]. Kay, H. F.; Miles, J. L. The Structure of Cadmium Titanate and Sodium Tantalate // Acta Cryst. 1957. 10 (3). P. 213-218.
- [7]. Ahtee, M.; Unonius, L. The Structure of NaTaO₃ by X-Ray Powder Diffraction // Acta Cryst. Sect. A 1977. 33 (1). P. 150-154.
- [8]. Ahtee, M.; Darlington, C. N. W. Structures of NaTaO₃ by Neutron Powder Diffraction // *Acta Cryst. Sect. B Struct. Crystallogr. Cryst. Chem.* 1980. 36 (5). P. 1007–1014.
- [9]. Goh, G. K. L.; Lange, F. F.; Haile, S. M.; Levi, C. G. Hydrothermal Synthesis of KNbO₃ and NaNbO₃ Powders // *J. Mater. Res.* 2003. 18 (2). P. 338-345.
- [10]. Liu, C.; Xu, H.; Li, H.; Liu, L.; Xu, L.; Ye, Z. Efficient Degradation of Methylene Blue Dye by Catalytic Oxidation Using the $Na_8Nb_6O_{19}\cdot 13H_2O/H_2O_2$ System // Korean J. Chem. Eng. -2011.-28 (4). -P. 1126-1132.
- [11]. Son, J.-H.; Wang, J.; Osterloh, F. E.; Yu, P.; Casey, W. H. A Tellurium-Substituted Lindqvist-Type Polyoxoniobate Showing High H₂ Evolution Catalyzed by Tellurium Nanowires via Photodecomposition // Chem. Commun. – 2014. – 50 (7). – P. 836–838.
- [12]. Nyman, M. A General Synthetic Procedure for Heteropolyniobates // Science 2002. 297 (5583). – P. 996-998.
- [13]. Berkowitz, J.; Chupka, W. A.; Inghram, M. G. Thermodynamics of the V–O System: Dissociation Energies of VO and VO₂ // J. Chem. Phys. 1957. 27 (1). P. 87-90.
- [14]. Putaj, P.; Lefebvre, F. Polyoxometalates Containing Late Transition and Noble Metal Atoms // Coord. Chem. Rev. 2011. 255 (15–16). P. 1642-1685.
- [15]. Laurencin, D.; Garcia Fidalgo, E.; Villanneau, R.; Villain, F.; Herson, P.; Pacifico, J.; Stoeckli-Evans, H.; Bénard, M.; Rohmer, M.-M.; Süss-Fink, G.; et al. Framework Fluxionality of Organometallic Oxides: Synthesis, Crystal Structure, EXAFS, and DFT Studies on [{Ru(η^6 -Arene)}₄Mo₄O₁₆] Complexes // Chem. A Eur. J. 2004. 10 (1). P. 208–217.
- [16]. Artero, V.; Proust, A.; Herson, P.; Gouzerh, P. Interplay of Cubic Building Blocks in (H6-Arene)Ruthenium-Containing Tungsten and Molybdenum Oxides // *Chem. A Eur. J.* 2001. 7 (18). P. 3901-3910.
- [17]. Sakurai, N.; Kadohata, K.; Ichinose, N. Application of High-Speed Liquid Chromatography Using Solvent Extraction of the Molybdoheteropoly Yellow to the Determination of Microamounts of Phosphorus in Waste Waters // Fresenius' Z. Anal. Chem. 1983. 314 (7). P. 634-637.
- [18]. Braungart, M.; Rüssel, H. Separation of Molybdoheteropoly Acids of Phosphorus, Arsenic, Silicon and Germanium as Ion-Associates by HPLC. Application to Ouantitative Determination in Water // Chromatographia – 1984. – 19 (1). – P. 185-187.
- [19]. Kirk, A. D.; Riske, W.; Finke, R. G.; Lyon, D. K.; Rapko, B. Rapid, High-Resolution, Reversed-Phase HPLC Separation of Highly Charged Polyoxometalates Using Ion-Interaction Reagents and Competing Ions // *Inorg. Chem.* – 1989. – 28 (4). – P. 792-797.
- [20]. Rozantsev, G. M.; Vavilova, S. M.; Belousova, E. E. Equilibria of Aqueous Solutions of Isopolyniobotungstates-6 with c Nb: C W = 1:5 // Russ. J. Inorg. Chem. – 2007. – 52 (9). – P. 1478-1485.
- [21]. Rozantsev, G. M.; Vavilova, S. M.; Zaslavskaya, L. V. Complex Formation in Nb₆O₁₉⁸ -WO₄²⁻ -H⁺-H₂O System Where c Nb: C W = 4: 2 // Russ. J. Inorg. Chem. 2010. 55 (3). P. 446–453.
- [22]. Vavilova, S. M.; Kryuchkov, M. A.; Belousova, K. E.; Rozantsev, G. M. Isopolyniobotungstate $H_xNb_2W_4O_{19}^{(4-x)}$ Ions: Analysis of the State of the Ions in

- Aqueous Solutions, Formation Constants Calculation and Thallium Salts Synthesis. // *Acta Chim. Slov.* 2010. 57 (2). P. 341-349.
- [23]. Anderson, T.M.; Rodriguez, M.A.; Stewart, T.A.; Bixler, J. N.; Xu, W.; Parise, J.B.; Nyman, M. Controlled Assembly of $[\mathrm{Nb}_{6\text{-}X}\mathrm{W}_x\mathrm{O}_{19}]^{(8\text{-}x)^-}$ (x = 0-4) Lindqvist Ions with (Amine)Copper Complexes // Eur. J. Inorg. Chem. 2008.No. 21 P. 3286–3294.
- [24]. Davis, M.E.; Dillon, C.J.; Holles, J.H.; Labinger, J. A New Catalyst for the Selective Oxidation of Butane and Propane This Work Was Funded by BP. // Angew. Chemie Int. Ed. 2002. 41 (5). P. 858.
- [25]. Cindrić, M.; Strukan, N.; Vrdoljak, V.; Devčić, M.; Veksli, Z.; Kamenar, B. Synthesis, Structure and Properties of Molybdenum(VI) Oxalate Complexes of the Types $M_2[Mo_2O_5(C_2O_4)_2(H_2O)_2]$ and $M_2[MoO_3(C_2O_4)]$ (M=Na, K, Rb, Cs) // Inorg. Chim. Acta-2000.-304 (2). P. -260-267.
- [26]. Izarova, N.V.; Pope, M.T.; Kortz, U. Noble Metals in Polyoxometalates // Angew. Chemie - Int. Ed. – 2012. – 51 (38). – P. 9492–9510.
- [27]. Lee, U.; Joo, H.-C. La₂[H₂PtMo₆O₂₄]·16H₂O // Acta Cryst. Sect. E Struct. Reports Online 2004. 60 (5). P. i61-i63.
- [28]. Flynn, C. M.; Pope, M. T. Tungstovanadate Heteropoly Complexes. I. Vanadium(V) Complexes with the Constitution M6O19n- and Vanadium: Tungsten .Leq. 1:2 // *Inorg. Chem.* – 1971. – 10 (11). – P. 2524-2529.
- [29]. Leparulo-Loftus, M. A.; Pope, M. T. Vanadium-51 NMR Spectroscopy of Tungstovanadate Polyanions. Chemical Shift and Line-Width Patterns for the Identification of Stereoisomers // *Inorg. Chem.* 1987. 26 (13). P. 2112-2120.
- [30. Gao, J.; Yan, J.; Beeg, S.; Long, D. L.; Cronin, L. One-Pot versus Sequential Reactions in the Self-Assembly of Gigantic Nanoscale Polyoxotungstates // J. Am. Chem. Soc. 2013, –135 (5). P. 1796-1805.
- [31. Sanchez Sanchez, M.; Girgsdies, F.; Jastak, M.; Kube, P.; Schlögl, R.; Trunschke, A. Aiding the Self-Assembly of Supramolecular Polyoxometalates under Hydrothermal Conditions To Give Precursors of Complex Functional Oxides // Angew. Chemie Int. Ed. 2012. 51 (29). P. 7194-7197.
- [32]. Müller, A.; Kögerler, P.; Dress, A. W. M. W. M. Giant Metal-Oxide-Based Spheres and Their Topology: From Pentagonal Building Blocks to Keplerates and Unusual Spin Systems // Coord. Chem. Rev. 2001. 222 (1). P. 193-218.
- [33]. Pope, M. T.; Müller, A. Polyoxolometalate Chemistry An Old Field with New Dimensions in Several Disciplines // Angew. Chemie Int. Ed. 1991. 30 (1). P. 34-48.
- [34]. Lemonnier, J.-F.; Duval, S.; Floquet, S.; Cadot, E. A Decade of Oxothiomolybdenum Wheels: Synthesis, Behavior in Solution, and Electrocatalytic Properties // *Isr. J. Chem.* 2011. 51 (2). P. 290-302.
- [35]. Izarova, N. V.; Santiago-Schübel, B.; Willbold, S.; Heß, V.; Kögerler, P. Classical/Non-Classical Polyoxometalate Hybrids // Chem. A Eur. J. 2016. 22 (45). P. 16052-16056.
- [36]. Chen, W.-C.; Yan, L.-K.; Wu, C.-X.; Wang, X.-L.; Shao, K.-Z.; Su, Z.-M.; Wang, E.-B. Assembly of Keggin-/Dawson-Type Polyoxotungstate Clusters with Different Metal Units and SeO₃²⁻ Heteroanion Templates // Cryst. Growth Des. 2014. 14 (10). P. 5099-5110.
- [37]. Godin, B.; Chen, Y.-G.; Vaissermann, J.; Ruhlmann, L.; Verdaguer, M.; Gouzerh, P. Coordination Chemistry of the Hexavacant Tungstophosphate [H₂P₂W₁₂O₄₈]¹²⁻ with FeIII Ions: Towards Original Structures of Increasing Size and Complexity // Angew.

- Chemie 2005, 117 (20). P. 3132-3135.
- [38]. Godin, B.; Vaissermann, J.; Herson, P.; Ruhlmann, L.; Verdaguer, M.; Gouzerh, P. Coordination Chemistry of the Hexavacant Tungstophosphate $[H_2P_2W_{12}O_{48}]^{12-}$: Synthesis and Characterization of Iron(III) Complexes Derived from the Unprecedented $\{P_2W_{14}O_{54}\}$ Fragment // Chem. Commun. 2005. No. 45 P. 5624.
- [39]. Abramov, P.A.; Ivanov, A.A.; Shestopalov, M.A.; Moussawi, M.A.; Cadot, E.; Floquet, S.; Haouas, M.; Sokolov, M.N. Supramolecular Adduct of γ -Cyclodextrin and $[\{Re_6Q_8\}(H_2O)_6]^{2+}(Q=S,Se)$ // *J. Clust. Sci.* -2018.-29(1).-P.9-13.

БЛАГОДАРНОСТИ

Автор глубоко признателен профессору РАН М.Н. Соколову и к.х.н. С.А. Адонину за неоценимую помощь в обсуждении синтетических стратегий и результатов исследования. Автор чтит память д.х.н. Н.К. Мороза, который привил автору интерес к ЯМР-исследованиям.

Огромную роль в данной работе сыграла работа в команде международной лаборатории LIA CLUSPOM. Идея изучения материалов на основе специфического межмолекулярного распознавания принадлежит Prof. E. Cadot, который сумел очень грамотно организовать исследования в этом направлении, благодаря чему был накоплен очень важный материал в области комплексов гость-хозяин на основе полиоксометаллатов, октаэдрических кластеров и циклодекстрина. Автор выражает огромную благодарность сотрудникам Института Лавуазье (Университет Версаля, Франция): Ph.D. S. Floquet, Ph.D. J. Marot, Ph.D. N. Leclerc-Laronze, Ph.D. M. Haouas.

Автор благодарит аспирантов и студентов за помощь в проведении экспериментальной работы: А.А. Шмакова, А.И. Иванов, Ph.D. М.А. Moussawi, А.А. Мухачёва, А.М. Матвеева, Л.И. Удалова, Е.П. Бушмелева.

Эта работа была бы невозможна без сотрудничества со специалистами в различных областях химии и физики. Автор с благодарностью отмечает вклад каждого из них: Рентгеноструктурный анализ — д.х.н. А.В. Вировец, к.х.н. Е.В. Пересыпкина; Рентгенофазовый анализ — Н.П. Короткевич, к.х.н. И.В. Корольков; Квантовохимические расчёты — Рh.D. Е.Вепаssi (НГУ); Ядерный магнитный резонанс — Н.Б. Компаньков; ИК-спектроскопия — к.ф.-м.н. Л.А. Шелудякова, Н.И. Алфёрова; Термический анализ — к.х.н. П.Е. Плюснин; Электроспрей масс-спектрометрия — Ph.D. C. Vicent (Университет Хайме I, Испания); Элементный анализ — к.х.н. А.Р. Цыганкова, к.х.н. Б.М. Кучумов, к.х.н. А.П. Зубарева, к.х.н. О.С. Кощеева, В.В. Анкудович, Н.Н. Комардина; ЦВА — д.х.н. Н.Ф. Захарчук, д.х.н. А.Л. Гущин; ВЭЖХ-ИСП-АЭС — д.х.н. О.В. Шуваева, к.х.н. Т.Е. Романова, В.В. Волчек.

АБРАМОВ Павел Александрович

ПОЛИЯДЕРНЫЕ ОКСОКОМПЛЕКСЫ МЕТАЛЛОВ 5 и 6 ГРУПП: СИНТЕЗ, РЕАКЦИОННАЯ СПОСОБНОСТЬ И НОВЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ В РАСТВОРАХ

Автореферат диссерт. на соискание ученой степени доктора химических наук Изд. лиц. ИД № 04060 от 20.02.2001.

Подписано к печати и в свет 27.05.2019. Формат 60×84/16. Бумага № 1. Гарнитура "Times New Roman"

Печать оперативная. Печ. л. 1,2. Уч.-изд. л. 1,1. Тираж 120. Заказ № 140 Федеральное государственное бюджетное учреждение науки Институт неорганической химии им. А.В. Николаева СО РАН Просп. Акад. Лаврентьева, 3, Новосибирск, 630090