"Институт неорганической химии СО РАН готовится принять на своей площадке ведущих химиков и биологов Соединённого Королевства. Российско-Британский семинар, посвященный проблемам медицинской визуализации, пройдет в ноябре, но подготовка уже началась" – сообщили сегодня «Вестям» в институте. 

О разработке, которую представят на семинаре новосибирские учёные – на канале Россия 1, Новосибирск (2 августа 2018):

Как заправский повар, химик Михаил Шестопалов в кухне-лаборатории жонглирует «ингредиентами»: серы побольше, селена поменьше, металла – несколько граммов. В вакуум – и в печь, на 800 градусов, на несколько дней. Результат – рентген-контрастный препарат, безопасней аналогов.

Подобные препараты применяют во всем мире. Попав в организм, они поглощают излучение. На снимках сосуды и органы выглядят чётко, без искажений – это и есть контрастность вещества. Эталоном считают йодосодержащие препараты – доступны, широко применяются. Но у йода масса побочных эффектов: противопоказан аллергикам, людям с больной щитовидкой, беременным. Новосибирцы в качестве основы используют рений и вольфрам – так же эффективны, как и йод, но не так вредны: негативное воздействие на организм элементов нивелирует защитная инертная оболочка.

Михаил Шестопалов, старший научный сотрудник Института неорганической химии СО РАН: «Есть такая вещь как инертный газ – он ни с чем не реагирует. Так вот, инертная оболочка с точки зрения организма – это значит, что организм с ней никаким образом не взаимодействует».

А значит, сыграв роль контрастера, вещество выйдет из организма без следа, без последствий. Препараты, созданные химиками, биологи проверяют на живых клетках.

Татьяна Позмогова, младший научный сотрудник Института клинической и экспериментальной лимфологии – филиала ИЦиГ СО РАН: «Смотрим проникновение в клетки: если вещество сильно проникает в клетки, мы его для контрастирования использовать не будем, потому что нам не нужно, чтобы вещество накапливалось в ткани».

Из сотен образцов препарата выбирают наиболее безвредные и контрастные.

Олеся Герасименко, корреспондент: «Действие наиболее перспективных препаратов, их токсичность, влияние на органы и скорость выведения из организма учёные исследуют на мышах. После введения препарата в организм животного за ним наблюдают в течение двух недель».

Над созданием рентген-контрастных препаратов на основе тяжелых металлов сегодня работает группа учёных из четырех новосибирских институтов: самые передовые исследования в этом направлении в мире. Цель сибиряков – вывести разработку из стен лаборатории и – главное – сделать рентгенодиагностику эффективней, дешевле и безопасней.

 

 

Материал в других СМИ:

Mirtesen.sputnik.ru, 02/08/2018
БезФормата.Ru Новосибирск (novosibirsk.bezformata.ru), 02/08/2018
Сибирская околица (okolica.net), 02/08/2018
Навигатор (navigato.ru), 02/08/2018 

 

Результаты исследований сотрудников Института – на страницах "Наука в Сибири".

"Не все вещества можно (да и нужно) видеть невооруженным глазом, но иногда это просто необходимо. Диабетики проверяют уровень глюкозы, врачи обнаруживают в выдыхаемом воздухе аммиак, указывающий на заболевание, а исследователи состояния окружающей среды — вредные газы или пестициды. Созданием точных сенсоров для обнаружения различных веществ занимаются ученые Института неорганической химии им. А.В. Николаева СО РАН совместно с зарубежными коллегами".

Наука в Сибири, 17 июля 2018 г., эл. версия

А также Новости Сибирской науки, Infopro54.ruАкадемгородок (academcity.org)

Результаты исследований сотрудников Института – на канале Россия 1, Новосибирск. "Препарат призван бить точно в цель, не поражая здоровые ткани. По эффективности его сегодня сравнивают с бомбой. Почему?" 

Россия 1, Новосибирск (13 июля 2018)

В этой лаборатории химики вместе с биологами создают оружие против рака. Комплекс соединений сможет бить без промаха точно в цель.

Анастасия Соловьёва, заведующая лабораторией НИИ клинической и экспериментальной лимфологии СО РАН: «Опухоль и опухолевые клетки в своем развитии используют очень много сигнальных путей и механизмов для обмана иммунной системы, и иммунная система борется не против, а за них».

Рак устойчив к лекарствам, воздействовать нужно сразу по нескольким фронтам. Так называемый мультимодальный комплекс, который взяли в разработку сибирские ученые – настоящая бомба. В наночастице – несколько боевых элементов: активный кислород, тепловая энергия и лекарство. Через вену комплекс направляют к опухоли, затем в дело вступает луч света.

Кирилл Воробьев, корреспондент: «Речь идет о создании соединений, способных проникать вглубь раковой опухоли и иметь фотодинамическую активность. Как раз рентген-лучи способны активировать подобные соединения, так как имеют хорошую проходимость через ткани».

Рентгеновский пучок на поверхности нано-частицы срабатывает как детонатор. Реакция пошла.

Михаил Шестопалов, старший научный сотрудник Института неорганической химии им. А. В. Николаева СО РАН: «Используя только одно рентген-излучение, мы запускаем целую цепочку: активируем кластерный комплекс фотодинамической терапии, который в свою очередь активирует «золото» (фототермотерапия), и параллельно с этим у нас происходит обычная химиотерапия».

На первом этапе реакции в клетках выделяется активный кислород, затем – мощный выброс тепла и взрыв: опухоль уничтожена. Терапия без разрезов – перспективное научное направление. Вопрос – кто первым представит миру готовую разработку? Ученые Сибирского отделения Академии наук уже сегодня начинают первые испытания." 

Результаты исследований сотрудников Института – на страницах "Наука в Сибири".

"Мы всегда стараемся уберечься от инфекций: моем руки перед едой, чихаем в платок, протираем руки после автобусных поручней. Однако есть места, невольно переполненные инфекциями: в частности, больницы и поликлиники. Конечно, в помещениях регулярно проводится дезинфекция, но она не способна защитить от всех заболеваний. Для предупреждения таких случаев сибирские ученые разработали специальные антибактериальные пленки."

Наука в Сибири, 11 июля 2018 г., эл. версия

А также Телеканал ОТСТАСС

Нозокомиальные (госпитальные) инфекции распространяются внутри больницы: человек приходит с травмой ноги, а уходит с совершенно другой болезнью. Возбудителями могут стать золотистый стафилококк и синегнойная палочка, также активно распространяются пневмония, туберкулез и т.д. Происходит это следующим образом: один чихает, второй — ставит руку на стойку регистратуры, врачебный стол, затем вытирает лицо... Конечно, существует процедура кварцевания: несколько раз в день включается ультрафиолетовая лампа, которая дезинфицирует помещение. Кроме того, подоконники и столы протираются хлоркой, но иногда персонал просто не успевает убрать кабинет после очередного пациента.

«Возникла идея создать некие самостерилизующиеся и безвредные для человека поверхности, при попадании на которые бактерии будут погибать. Известный пример такого материала — серебро: его ионы токсичны для микроорганизмов. Однако это не очень дешево, плюс непокрытое серебро окисляется и стирается. К тому же, если, например, все время есть из серебряной посуды, развивается дисбактериоз — ведь в организме есть и полезные бактерии», — рассказывает старший научный сотрудник Института неорганической химии им. А.В. Николаева СО РАН кандидат химических наук Михаил Александрович Шестопалов.

Коллектив исследователей: аспирант ИНХ СО РАН Дарья Владимировна Евтушок, Михаил Александрович Шестопалов, студент ФЕН НГУ Вячеслав Александрович Бардин

Тогда ученые решили обратить внимание на вещества, работающие на принципе фотодинамической инактивации микроорганизмов. Схожий принцип используется при фотодинамической терапии раковых заболеваний: пациенту вводят нетоксичные соединения, которые облучаются светом с определенной длиной волны, что активирует их способность производить активные формы кислорода (АФК), убивающие опухоль. В качестве фотоактивных компонентов в антибактериальных материалах специалисты ИНХ СО РАН предложили использовать кластерные комплексы вольфрама и молибдена: под воздействием света (солнечного или искусственного) они эффективно генерируют синглетный кислород — один из видов АФК, способный уничтожить любую попавшуюся ему на пути бактерию. Такой кислород существует лишь долю секунды, а потому представляет опасность лишь на поверхности материала. Более того, активированная поверхность безвредна для человека, поскольку роговой слой кожи не восприимчив к подобным воздействиям.

Существует и другой вид антибактериальных материалов: бактерия, попадая на них, просто «скатывается». Похожим образом работает обычное мыло — оно зачастую не убивает, а смывает микроорганизмы с рук. Получается, можно сделать покрытие, на котором бактерии не смогут закрепиться — так называемое супергидрофобное, отталкивающее воду.

«В нашей работе мы решили объединить эти способы борьбы. Взяли близкое к супергидрофобному вещество — модифицированный тефлон — и добавили в него наш активный компонент (вольфрам или молибден). Этот тефлон кислородопроницаем, что важно, так как включенным в него комплексам необходим доступ к воздуху для генерации синглетного кислорода. В итоге бактерии либо смываются, либо (особо цепкие) уничтожаются под воздействием света», — добавляет Михаил Шестопалов.

Цвет антибактериальных пленок зависит от количества кластерных комплексов

Такие эксперименты уже были успешно проведены в Федеральном исследовательском центре фундаментальной и трансляционный медицины в лаборатории экспериментального моделирования и патогенеза инфекционных заболеваний кандидатом биологических наук Александром Юрьевичем Алексеевым. Работа ученых была поддержана грантом президента Российской Федерации.

Такие пленки, словно полиэтиленовые, натягиваются на поверхности, будь то врачебный стол или стойка в поликлинике. Кроме того, модифицированный тефлон способен растворяться в нетрадиционных растворителях, поэтому из него можно сделать прозрачный лак и нанести куда угодно — это на порядок снизит перенос и распространение различных заболеваний. Прежде всего, пленкой необходимо покрывать пол, потому что через ноги переносится немало инфекций. При желании некоторое медицинское оборудование (капельницы, трубки) также реально делать с этим материалом. Ученый уверен: в зависимости от инвестора и его требований можно будет реализовать разработку в значимых масштабах даже за год.

Алёна Литвиненко

Фото автора