Ученые из Института неорганической химии им. А. В. Николаева СО РАН исследуют материалы для сенсоров для детекции аммиака в выдыхаемом воздухе. В перспективе их можно будет использовать на спирометре для диагностики различных заболеваний по составу выдыхаемого воздуха, например заболевания почек.

"Наука в Сибири" 26 июля 2021

"Новости Сибирской науки" 26 июля 2021

На основе таких пленок можно будет сделать прибор, который бы детектировал аммиак по выдоху (Фото Марии Фёдоровой)

Спирография, или спирометрия — метод, при котором оценивается объем вдыхаемого и выдыхаемого воздуха. Обычно он применяется для того, чтобы врачи могли судить о серьезности легочных заболеваний или тяжести последствий перенесенной ОРВИ, но практически не используется для исследования газового состава выдыхаемого воздуха. Сотрудники ИНХ СО РАН придумали материал, который может служить индикатором наличия аммиака в выдыхаемом человеком воздухе. Аммиак — продукт обмена белков и аминокислот в человеческом организме. В нашей печени и почках аммиак превращается в мочевину, а затем выводится из организма. Правда, иногда случается так, что нормальный уровень аммиака оказывается превышен. Это может сигнализировать о почечной недостаточности.

На данный момент в России нет приборов для обнаружения аммиака в составе выдыхаемого воздуха в диагностических целях. Существуют только лабораторные анализы на наличие вещества в крови пациента для выявления заболеваний печени (гепатит, цирроз).

«Мы исследуем активные слои сенсоров на основе пленок фталоцианинов металлов, которые относятся к классу комплексных металлорганических соединений. Сенсоры на основе данных веществ обладают множеством преимуществ: они проявляют обратимый сенсорный отклик при комнатной температуре, могут быть получены как осаждением из газовой фазы, так и растворными методами, а еще термически и химически стабильны. Важно также и то, что структуру фталоцианинов можно широко варьировать путем введения различных металлов-комплексообразователей и заместителей в ароматическом кольце, что позволяет оптимизировать и изменять их сенсорные свойства», — рассказывает младший научный сотрудник лаборатории химии летучих координационных и металлорганических соединений Дарья Дмитриевна Клямер.

Фталоцианины металлов обладают полупроводниковыми свойствами. Измерение сенсорного отклика исследуемых пленок основано на изменении проводимости слоев при изменении состава газовой смеси.

«Мы осаждаем пленки фталоцианинов металлов на подложки со встречно-штыревыми электродами, помещаем их в измерительную ячейку и фиксируем изменение величины сопротивления/проводимости пленок при введении различных концентраций аммиака. Содержание аммиака в выдыхаемом воздухе более 1 ppm, помимо дисфункции печени, служит индикатором почечной недостаточности при нефритах, токсических поражениях почек. На данный момент наши соединения могут улавливать концентрации аммиака от 0,1 ppm, но в перспективе показатель может быть понижен», — дополняет научный сотрудник лаборатории кристаллохимии кандидат физико-математических наук Александр Сергеевич Сухих.

При взаимодействии пленки фталоцианина металла с газом-аналитом наблюдается заметное резкое изменение сопротивления, а после прекращения подачи аналита в измерительную ячейку сопротивление возвращается к исходному значению. То есть изменение проводимости пленок служит так называемым индикатором содержания аммиака в выдыхаемом воздухе человека. Материалы подходят как для количественного, так и для качественного анализа. Для последнего необходимо еще отработать методики измерения.

Исследователи также работают над определением других газов-биомаркеров заболеваний, например водорода и монооксида азота. Так, превышение количества водорода в выдыхаемом воздухе может свидетельствовать о нарушениях микрофлоры кишечника, непереносимости лактозы, а монооксида азота — о заболеваниях дыхательных путей, например астме. «В перспективе, конечно же, хотелось бы перейти к тестированию получаемых активных слоев для сенсорных устройств на реальных образцах выдыхаемого воздуха пациентов больниц», — подчеркивает Дарья Дмитриевна.

Исследования выполняются при поддержке Российского научного фонда (проект № 20-73-00080) и стипендии Президента РФ.

Химики ИНХ СО РАН достигли ёмкости батарей на основе натрия, сопоставимые с литий-ионными аккумуляторами – 300 миллиампер в час на один грамм. Над созданием ёмких и долговечных аккумуляторов работают учёные Академгородка. Исследователи всего мира ищут замену литию ─ главного элемента мобильных источников тока. На что сделали ставку сибиряки, и по какому принципу работают новые батарейки?

ГТРК Новосибирск, 15.07.2021
Новости Сибирской науки, 15.07.2021

 


Смартфоны, планшеты, ноутбуки, переносные электродрели, электромобили: огромное количество техники работает на литий-ионных аккумуляторах. Объём мирового рынка такого типа зарядных устройств составляет десятки миллиардов долларов и продолжает расти. Вслед за ним растёт и спрос на сырьё, тот же литий ─ дорогой и не самый распространённый в мире металл. Именно поэтому разные группы учёных ищут ему альтернативу.

На смену может прийти натрий ─ родственный литию металл со схожими химическими свойствами, один из самых распространённых в земной коре элементов. Стоит ─ в разы дешевле. Но есть нюанс. Важным компонентом любых аккумуляторов является углеродный материал. Так, в паре с литием работает графит. Однако натрий к нему не подходит. Как элементы разных мозаик они несопоставимы.

Научный сотрудник Института неорганической химии СО РАН Светлана Столярова пояснила: в графите между слоями есть пространство, в котором запасали литий, но с натрием так не получается. Связано это с его строением и большим размером.

Новосибирские химики нашли замену графиту, создали новый тип углеродного материала с наночастицами азота. Похож на сажу, с пористой как соты структурой. В них и накапливается натрий. Главная задача исследователей ─  сделать разработку конкурентной. Ёмкость аккумулятора не должна уступать литий-ионным аналогам, иначе ни одного инвестора новинка не заинтересует. И учёные добились этого.

Старший научный сотрудник лаборатории физикохимии наноматериалов Института неорганической химии СО РАН Юлия Федосеева сообщила, что разработчики достигли ёмкости, сопоставимые с литий-ионными аккумуляторами, ─ 300 миллиампер в час на один грамм.

Теперь время работы каждого образца тестируют на специальном стенде. Батарейки заряжают и разряжают сотни раз. Таким образом из разных модификаций аккумуляторов учёные выявляют самый ёмкий и долговечный. Предел пока не достигнут, говорят разработчики. Есть, что улучшать и дорабатывать.

 
Автор: Олеся Герасименко.

 

Исследователи Института неорганической химии СО РАН предложили заменить платину менее токсичным элементом ─ рутением. Известно, что во время лечения лекарства нередко проявляют свою токсичность, влияют на работу здоровых органов.  Поэтому важно найти щадящее средство. В научном поиске помог луч света.

ГТРК Новосибирск, 16.07.2021
Новости Сибирской науки, 19.07.2021

 


Один из перспективных элементов для замены платины в препаратах химиотерапии ─ рутений. Он на порядок дешевле химического собрата, а главное ─ безопаснее.

«У рутения меньшая токсичность на печень, почки и другие органы по сравнению с платиновыми аналогами, ─ сообщила младший научный сотрудник Института неорганической химии СО РАН Елена Столярова. ─ Это многообещающий препарат».

Присмотреться к рутению учёных подтолкнули его свойства. В определённых соединениях этот металл активен против опухолей, подавляет рост раковых клеток. В связке с оксидом азота получается уникальная комбинация. Спокойный в обычном состоянии, при свете комплекс включается в работу и под действием света распадается на две активные частицы ─ на комплекс рутения и оксид азота.

Это значит, что при попадании в кровь рутений не будет вести борьбу с клетками и тканями организма. Локальное введение препарата плюс точечное воздействие светом ─ в перспективе почти идеальная терапия.

«При введении в кровь они будут распределяться по организму. Дальше возможно  введение лапароскопически световода в конкретную точку. Идеальный вариант ─ это комплексы, которые  будут разлагаться под действием инфракрасного излучения, ─ поясняет главный научный сотрудник Института неорганической химии СО РАН Геннадий Костин. ─ Можно просто посветить на поверхность руки, и в глубине он найдёт ту самую точку, где должна происходить реакция».  

Базовые эксперименты провели на  клетках саркомы лёгких. Но учёные уверены, что действовать комплекс будет и против других видов рака.

Задача химиков – изучить фотохимические свойства новых соединений, а биологи и биохимики из других институтов Академгородка исследуют взаимодействие комплексов с биообъектами. В настоящее время работа идёт на культурах клеток.
Исследование сибиряков уже получило признание Королевского химического общества Великобритании, а Российский фонд фундаментальных исследований поддержал проект грантами. Работа на ближайшее будущее ─ поиск наиболее эффективных вариантов соединений с меньшей токсичностью и высокой противоопухолевой активностью.

 
Автор: Олеся Герасименко.

 

Институт неорганической химии СО РАН как мировой лидер производства монокристаллов начал сотрудничество с корейскими астрофизиками.

ГТРК Новосибирск, 12.07.2021
Новости Сибирской науки, 12.07.2021

 
 

Кристаллы в природе почти всегда ─ завораживающие формой многогранники. Совсем иначе выглядят выращенные в лаборатории: гладкие цилиндры правильной формы. Молибдат лития позволит по-новому взглянуть на Вселенную.

Основу будущего монокристалла в виде порошка после очистки от посторонних примесей помещают в печь, где она растёт по миллиметру в час до нужного размера при температуре выше 700 градусов. Процесс длится около двух недель.

Выращенные в Новосибирске кристаллы ─ заказ корейских учёных. С их помощью астрофизики намерены выяснить массу нейтрино, которую ещё называют частица-призрак, при том, что стандартная модель требует, чтобы у нейтрино массы не было. Доказательство обратного позволит шагнуть за пределы привычной физики, расширит представления учёных об устройстве Вселенной.

«Исследовать нейтрино напрямую не представляется возможным. Это можно делать только косвенным способом, в данном случае ─ регистрацией двух типов двойного бета-распада и сравнения их энергий. Конкретно эти кристаллы представляют большой интерес из-за высокого содержания в них ядер молибдена и вольфрама», ─ пояснила младший научный сотрудник Института неорганической химии СО РАН Вероника Григорьева.

Установки, для которых предназначены кристаллы, расположены глубоко под землёй, чтобы исключить влияние космогенной радиации. Помимо поставок в Южную Корею, сибиряки работают и с европейскими научными организациями. Институт неорганической химии ─ один из мировых лидеров по производству кристаллов.

«Мы можем делать несколько десятков кристаллов в год, хотя нужны сотни. Масштабировать возможно. Есть все основания для этого», ─ комментирует ведущий научный сотрудник, заведующий лабораторией Института неорганической химии СО РАН Владимир Шлегель.

Если поиск массы нейтрино методом двойного бета-распада увенчается успехом, мировая наука сделает огромный шаг вперёд. И в этом, несомненно, будет заслуга и новосибирцев.

 
Автор: Олеся Герасименко.