Материалы о разработках сотрудников Института представлены в видеосюжете ГТРК Вести Новосибирск. "Определить астму или надвигающийся кашель по одному выдоху: новосибирские химики работают над созданием диагностических сенсоров для болезней легких."

ГТРК Вести Новосибирск, 07.07.2022

Российский научный фонд поддержал исследование грантом. Мы не будем первыми в мире, но стать первыми в России есть все шансы, говорят новосибирские химики. Они работают над созданием нового типа сенсоров, способных по выдоху определить болезни легких. Западный аналог стоит не меньше пяти тысяч долларов. На порядок доступнее ученые планируют сделать отечественную разработку.

"Известно, что возможно детектировать заболевания по анализу выдыхаемого воздуха и его конденсата и определять в нем наличие специфических биомаркеров. В нашем случае речь идет об оксидах азота как биомаркерах бронхолегочных заболеваний ─ астмы и хронического кашля", ─ сообщила научный сотрудник Института неорганической химии СО РАН Светлана Доровских. 

Оксид азота сигнализирует о воспалительном процессе в организме. Суперсвойство сенсора ─ улавливать его мельчайшие частицы, а значит, выявить болезнь на ранней стадии, что позволит предотвратить ее хроническое течение и дорогостоящую терапию. По задумке ученых, сенсоры должны определять искомые частицы как в выдыхаемом воздухе, так и в слюне.

По словам научного сотрудника Института неорганической химии СО РАН Дарьи Клямер, необходимо сочетание газовых и электрохимических сенсоров, чтобы определить точное содержание оксида в организме. 

Какие соединения более эффективны? Можно ли заменить золото другим, более доступным драгметаллом? Исследователи экспериментируют с компонентами. На данном этапе ученые ведут поиск оптимального состава материала для чувствительного сенсора. Но уже можно пофантазировать, каким будет прототип действующего устройства. Предположительно, это будет небольшой прибор, в который нужно подышать, и он выдаст результат за несколько минут. 

Цель ученых ─ создать диагностические сенсоры, максимально доступные и локализованные в России. Чтобы сделать шаг к выходу на рынок, необходим интерес со стороны инвесторов или бизнес-партнеров.

 
Автор: Олеся Герасименко.
Материалы о разработках сотрудников Института представлены в видеосюжете ГТРК Вести Новосибирск. "Новосибирские химики представили разработку для поиска токсикантов ─ опасных для здоровья загрязнителей ─ в воде. Разработанный комплекс способен улавливать в пробах даже крохотные доли токсических веществ. Он более чувствительный, чем существующие на рынке аналоги."
 
 

Молекулу собрали как конструктор. Среди её кирпичиков есть атомы азота, кислорода, углерода. Созданное искусственно путём сложных химических превращений вещество разработано с определённой целью: искать загрязнители в воде, в частности ─ аммиак. Его соединения входят в состав удобрений и нередко попадают в грунтовые воды. Важно также определять амины ─ отходы производства пластика.

«Их количество контролируется прежде всего в питьевой воде. Для этого используются различные методы, которые требуют дорогостоящего оборудования и высокой квалификации персонала. Мы используем наш полимер, чтобы сделать простой и при этом чувствительный метод для обнаружения данных загрязнителей», ─ пояснил ведущий научный сотрудник Института неорганической химии СО РАН Андрей Потапов. 

Полимер ─ жёлтый порошкообразный комплекс. Его яркая особенность ─ люминесценция. При контакте с токсикантом он меняет свои свойства и начинает светиться под ультрафиолетом. 

Преимущество, которое отличает разработку от аналогов ─ чувствительность. Комплекс в тысячу раз более восприимчив к токсическим веществам. Ещё один немаловажный плюс: одна из модификаций полимера улавливает в воде ионы алюминия, которые вредят здоровью. При этом сам полимер безвреден для окружающей среды, его расход минимальный: 1 миллиграмм на 1 миллилитр воды.

По словам младшего научного сотрудника Института неорганической химии СО РАН Дмитрия Павлова, одно из преимуществ полимера в том, что его можно отфильтровать, промыть и использовать повторно, но и после этого он не расходуется полностью. 

Потенциальные пользователи разработки ─ лаборатории, контролирующие качество воды. Но исследователи планируют создать вариант полимера, который был бы доступен для широкого круга пользователей, и придать ему форму, например, тест-полосок. 

Исследование стало возможным, благодаря поддержке Российского научного фонда. В 2022 году грант заканчивается, но учёные рассчитывают на его продление. Есть идеи, как улучшить полимер и сделать его чувствительным ещё и к антибиотикам.

Репортаж Олеси Герасименко 

Группа ученых из Института неорганической химии им. А. В. Николаева СО РАН разрабатывает новые гибридные материалы на основе пленок фталоцианинов и наночастиц благородных металлов — слоев химических сенсоров для диагностики заболеваний органов дыхательных путей. Реализация этой идеи позволит своевременно выявлять проблемы в дыхательной системе человека, избежать перехода болезней в хроническую стадию и последующего дорогостоящего лечения.

"Наука в Сибири" 30 мая 2022

Из-за пандемии COVID-19 ученые стали активнее вести исследования в сфере заболеваний органов дыхания. Сегодня существует потребность в разработке сенсорного диагностического направления. 

Общая схема химического процесса 
Общая схема химического процесса

«Развитие сенсорного направления “от материалов к портативному датчику” позволит в дальнейшем иметь достоверные данные о состоянии органов дыхания практически в домашних условиях. Предполагается, что усовершенствование материалов сенсоров создаст предпосылки к переходу к конкретным изделиям, датчиками “два в одном”, которые будут улавливать оксиды азота — метаболиты заболеваний дыхательных путей в выдыхаемом воздухе и слюне. Наш проект направлен на создание материалов для газовых сенсоров и электрохимических сенсоров», — отмечает сотрудник ИНХ СО РАН кандидат химических наук Светлана Игоревна Доровских. 

В процессе диагностики пациент выдыхает воздух в датчик, с помощью встроенных калибровочных программ прибор выдает значение, по которому можно выявить воспалительный процесс. Похожий принцип работы у импортного устройства NObreath, но из-за высокой стоимости он является труднодоступным. Материал сенсора, который используется в создаваемом сибирскими учеными датчике, — их авторская разработка.

Лаборатория ИНХ СО РАН работает с полупроводниковыми материалами на основе пленок фталоцианинов. «Некоторые наши исследования до сих пор были направлены на детектирование аммиака для определения почечной недостаточности при анализе выдыхаемого воздуха. Сейчас мы решили двигаться в направлении диагностики дыхательных органов и анализа NO и его метаболитов. Фталоцианины известны как проводники и широко востребованы. Мы решили их усовершенствовать путем создания структур на основе пленок фталоцианинов и модификаций этих структур наночастицами благородных металлов: золота, платины и других. Преимуществом создаваемых нами материалов, прежде всего, является комбинация двух компонентов благородных металлов и полупроводников, что позволит повысить чувствительность сенсоров к определяемым биомаркерам без необходимости их разделения в образцах выдыхаемого воздуха и слюны. Такой подход делает возможным выявление следов специфических биомаркеров на уровне биллионных долей», — отмечает С. И. Доровских. 

Способность сенсорного датчика улавливать биллионные следы биомаркера повышает его эффективность, а неинвазивность и быстрота диагностики датчика обуславливают его перспективность для медицины. Прибор пусть и не покажет первопричину возникновения воспалительного процесса, но на относительно ранних стадиях сможет определить предпосылки к заболеванию органов дыхательных путей. Имея на руках эту информацию, человек уже может своевременно обратиться к лечащему врачу и предупредить возникновение хронической или трудноизлечимой фазы болезни. Так же как и тест для определения уровня глюкозы, диагностику органов дыхания нужно наблюдать в динамике, это позволит держать здоровье под контролем. 

Исследования выполняются при поддержке Российского научного фонда (проект № 21-73-10142).

Кирилл Сергеевич

Изображение предоставлено исследовательницей
 

Видеосюжет, посвященный Дню химика 2022, опубликован в социальных сетях МНиИП НСО.
 
"Новосибирские химики познают мир, исследуя основу костной ткани человека и комплексы иридия, нужные для создания катализаторов. В честь Дня химика дарим фейерверки науке и благодарим за участие в сюжете лауреатов именных стипендий Правительства области:

Светлану Макарову, аспиранта Института химии твёрдого тела и механохимии СО РАН. Она ведёт «Исследование свойств лантан-силикат-замёщенного гидроксиапатита — материала для медицинского применения».
Полину Топчиян, аспиранта Института неорганической химии им. А.В. Николаева СО РАН. Она реализует проект «Акванитритные комплексы иридия как эффективные предшественники иридия для гетерогенных катализаторов».

Поздравляем вас с праздником, химики!
 

Видеосюжет "Что для Вас химия"

опубликован 29 мая 2022 года в социальных сетях министерства: 

https://vk.com/minnaukinso
https://ok.ru/group/61447832010960
https://t.me/minnauki_nso

ссылка на видео