Издательством Новосибирского госуниверситета опубликовано учебное пособие "Координационная химия", авторами которого являются сотрудники Института Соколов М.Н., Гущин А.Л. и Самсоненко Д.Г.

Координационная химия: в 2 ч.: учебное пособие / М.Н. Соколов, А.Л. Гущин, Д.Г. Самсоненко. Новосиб. гос. Ун-т. Новосибирск: ИПЦ НГУ, 2021. Ч. I. Электронное строение, устойчивость, механизмы реакций, неводные растворители. 210 с. ISBN 978-5-4437-1161-4, ISBN 978-5-4437-1234-5 (часть 1). Посмотреть пособие

В журнале Inorganic Chemistry (ИФ 5.165) опубликована статья с участием сотрудников Института Васильченко Д.Б., Ткаченко П.А., Ткачева С.В., Поповецкого П.С., Комарова В.Ю., Асановой Т.И., Асанова И.П., Филатова Е.Ю., Максимовского Е.А., Герасимова Е.Ю.

“Sulfuric acid solutions of [Pt(OH)4(H2O)2]: platinum speciation survey and the hydrated Pt(IV) oxide formation for practical useDanila Vasilchenko, Pavel Tkachenko, Sergey Tkachev, Pavel Popovetskiy, Vladislav Komarov, Tatyana Asanova, Igor Asanov, Evgeny Filatov, Eugene Maximovskiy, Evgeny Gerasimov, Angelina Zhurenok, Ekaterina Kozlova // Inorg. Chem. 2022, 10.1021/acs.inorgchem.2c01134 Посмотреть статью 

Схема, иллюстрирующая формы платины, превалирующие в сернокислых растворах в зависимости от концентрации кислоты

Материалы о разработках сотрудников Института представлены в видеосюжете ГТРК Вести Новосибирск. "Новосибирские химики представили разработку для поиска токсикантов ─ опасных для здоровья загрязнителей ─ в воде. Разработанный комплекс способен улавливать в пробах даже крохотные доли токсических веществ. Он более чувствительный, чем существующие на рынке аналоги."
 
 

Молекулу собрали как конструктор. Среди её кирпичиков есть атомы азота, кислорода, углерода. Созданное искусственно путём сложных химических превращений вещество разработано с определённой целью: искать загрязнители в воде, в частности ─ аммиак. Его соединения входят в состав удобрений и нередко попадают в грунтовые воды. Важно также определять амины ─ отходы производства пластика.

«Их количество контролируется прежде всего в питьевой воде. Для этого используются различные методы, которые требуют дорогостоящего оборудования и высокой квалификации персонала. Мы используем наш полимер, чтобы сделать простой и при этом чувствительный метод для обнаружения данных загрязнителей», ─ пояснил ведущий научный сотрудник Института неорганической химии СО РАН Андрей Потапов. 

Полимер ─ жёлтый порошкообразный комплекс. Его яркая особенность ─ люминесценция. При контакте с токсикантом он меняет свои свойства и начинает светиться под ультрафиолетом. 

Преимущество, которое отличает разработку от аналогов ─ чувствительность. Комплекс в тысячу раз более восприимчив к токсическим веществам. Ещё один немаловажный плюс: одна из модификаций полимера улавливает в воде ионы алюминия, которые вредят здоровью. При этом сам полимер безвреден для окружающей среды, его расход минимальный: 1 миллиграмм на 1 миллилитр воды.

По словам младшего научного сотрудника Института неорганической химии СО РАН Дмитрия Павлова, одно из преимуществ полимера в том, что его можно отфильтровать, промыть и использовать повторно, но и после этого он не расходуется полностью. 

Потенциальные пользователи разработки ─ лаборатории, контролирующие качество воды. Но исследователи планируют создать вариант полимера, который был бы доступен для широкого круга пользователей, и придать ему форму, например, тест-полосок. 

Исследование стало возможным, благодаря поддержке Российского научного фонда. В 2022 году грант заканчивается, но учёные рассчитывают на его продление. Есть идеи, как улучшить полимер и сделать его чувствительным ещё и к антибиотикам.

Репортаж Олеси Герасименко 

Группа ученых из Института неорганической химии им. А. В. Николаева СО РАН разрабатывает новые гибридные материалы на основе пленок фталоцианинов и наночастиц благородных металлов — слоев химических сенсоров для диагностики заболеваний органов дыхательных путей. Реализация этой идеи позволит своевременно выявлять проблемы в дыхательной системе человека, избежать перехода болезней в хроническую стадию и последующего дорогостоящего лечения.

"Наука в Сибири" 30 мая 2022

Из-за пандемии COVID-19 ученые стали активнее вести исследования в сфере заболеваний органов дыхания. Сегодня существует потребность в разработке сенсорного диагностического направления. 

Общая схема химического процесса 
Общая схема химического процесса

«Развитие сенсорного направления “от материалов к портативному датчику” позволит в дальнейшем иметь достоверные данные о состоянии органов дыхания практически в домашних условиях. Предполагается, что усовершенствование материалов сенсоров создаст предпосылки к переходу к конкретным изделиям, датчиками “два в одном”, которые будут улавливать оксиды азота — метаболиты заболеваний дыхательных путей в выдыхаемом воздухе и слюне. Наш проект направлен на создание материалов для газовых сенсоров и электрохимических сенсоров», — отмечает сотрудник ИНХ СО РАН кандидат химических наук Светлана Игоревна Доровских. 

В процессе диагностики пациент выдыхает воздух в датчик, с помощью встроенных калибровочных программ прибор выдает значение, по которому можно выявить воспалительный процесс. Похожий принцип работы у импортного устройства NObreath, но из-за высокой стоимости он является труднодоступным. Материал сенсора, который используется в создаваемом сибирскими учеными датчике, — их авторская разработка.

Лаборатория ИНХ СО РАН работает с полупроводниковыми материалами на основе пленок фталоцианинов. «Некоторые наши исследования до сих пор были направлены на детектирование аммиака для определения почечной недостаточности при анализе выдыхаемого воздуха. Сейчас мы решили двигаться в направлении диагностики дыхательных органов и анализа NO и его метаболитов. Фталоцианины известны как проводники и широко востребованы. Мы решили их усовершенствовать путем создания структур на основе пленок фталоцианинов и модификаций этих структур наночастицами благородных металлов: золота, платины и других. Преимуществом создаваемых нами материалов, прежде всего, является комбинация двух компонентов благородных металлов и полупроводников, что позволит повысить чувствительность сенсоров к определяемым биомаркерам без необходимости их разделения в образцах выдыхаемого воздуха и слюны. Такой подход делает возможным выявление следов специфических биомаркеров на уровне биллионных долей», — отмечает С. И. Доровских. 

Способность сенсорного датчика улавливать биллионные следы биомаркера повышает его эффективность, а неинвазивность и быстрота диагностики датчика обуславливают его перспективность для медицины. Прибор пусть и не покажет первопричину возникновения воспалительного процесса, но на относительно ранних стадиях сможет определить предпосылки к заболеванию органов дыхательных путей. Имея на руках эту информацию, человек уже может своевременно обратиться к лечащему врачу и предупредить возникновение хронической или трудноизлечимой фазы болезни. Так же как и тест для определения уровня глюкозы, диагностику органов дыхания нужно наблюдать в динамике, это позволит держать здоровье под контролем. 

Исследования выполняются при поддержке Российского научного фонда (проект № 21-73-10142).

Кирилл Сергеевич

Изображение предоставлено исследовательницей