При нанесении металлического покрытия и последующем низкотемпературном отжиге поверхность алмаза трансформируется, образуя достаточно тонкое и прочно связанное с алмазом графеновое покрытие. Локальная графитизация алмазной пленки позволит создать электронную схему на подложке без дополнительных металлических контактных слоев. Ученые из Института неорганической химии им. А. В. Николаева СО РАН создали такой проводящий графеноподобный слой и изучают его транспортные свойства. Статья об этом опубликована в международном журнале Synthetic Metals.
 
Материалы о разработке сотрудников Института опубликованы в газете "Наука в Сибири" (№26 от 26 июня 2025, электр. версия - 23.06.2025) и представлены на сайте Российской академии наук (25.06.2025). 

 
  

Алмаз — хороший диэлектрик, устойчивый к воздействию высоких напряжений и ионизационному излучению. Графен — другая модификация углерода, отличающаяся высокой электропроводностью. Комбинация этих материалов открывает возможность для развития углеродной электроники нового поколения, в которой электрический сигнал будет подаваться по графеновым дорожкам к полупроводниковым алмазным элементам. Однако переносить готовый графен на поверхность алмаза не всегда эффективно, поскольку между материалами образуется нековалентная связь, ухудшающая электрический контакт. Альтернативное решение — непосредственная графитизация алмазной поверхности. На выполнение этой задачи направлен проект РНФ «Гибридные sp3-sp2 углеродные материалы как платформа для разных областей электроники: синтез, строение и свойства».

«Алмаз — состояние углерода в sp3-гибридизации, то есть каждый его атом связан с еще четырьмя атомами углерода. Эта структура обеспечивает большую запрещенную зону (ту область значений энергий, которыми не может обладать электрон) и, следовательно, хорошие изоляционные свойства алмаза. Графит же состоит из плоских листов графена, у которых каждый атом связан с тремя другими, и образуется структура пчелиных сот. При нормальных условиях (комнатная температура и атмосферное давление) термодинамически более стабильная фаза углерода — графит, алмаз же метастабилен. Казалось бы, алмаз должен спонтанно преобразоваться в графит. Но этого не происходит из-за высокого энергетического барьера, необходимого для разрушения алмазной структуры. Для такого превращения требуются высокие температуры (выше 2 000 ℃). Однако в присутствии каталитического металла разрушение алмазной структуры значительно упрощается. При нагревании в интерфейсном слое «алмаз — металл» возникает встречная диффузия атомов, то есть частицы металла погружаются в алмаз, а атомы углерода проникают в металл. В итоге происходит насыщение каталитической частицы и выделяется sp2-углерод, параллельно формируются графеновые слои на поверхности алмаза», — рассказывает старший научный сотрудник лаборатории физикохимии наноматериалов ИНХ СО РАН кандидат физико-математических наук Ольга Викторовна Седельникова.

Ученые используют поликристаллические алмазные пленки, получаемые методом плазмохимического осаждения из газовой фазы. При этом в водородно-углеродной плазме образуются углеродосодержащие радикалы, которые конденсируются на кремниевой подложке с образованием алмазной фазы. За десять часов исследователи синтезируют порядка 50—70 микрон плотной алмазной пленки, которая состоит из поликристаллитов размером около десятков микрон. В итоге ее свойства близки к свойствам монокристаллических алмазных подложек. 

Тонкий слой металла (обычно это железо, никель или молибден) наносят на поликристаллическую пленку с помощью магнетронного напыления через трафарет. После этого пленку переносят в печь и отжигают в бескислородной атмосфере. В течение получаса происходит конверсия алмаза в графитоподобную форму толщиной около пяти нанометров. Невооруженным глазом видно, что нагретая область стала темнее. Поскольку сам алмаз для оптики прозрачен, это говорит о том, что сформировалась графитовая фаза. На каждом этапе ученые снимали спектры с помощью спектрометра. Было установлено, что при 310 ℃ начинает формироваться графит. Такая температура считается низкой, однако процесс уже запускается. При 500 ℃ образуется два нанометра графита, а это примерно восемь слоев графена.

«При создании электронной платы нужно нанести проводящую разводку к тем или иным компонентам. Мы можем нанести тонкий слой металла (несколько нанометров) так, как нам нужно, нагреть (до 700—800 ℃), и получится очень тонкий электропроводящий графеновый слой. На алмазной подложке без дополнительных переходных слоев можно получить готовый электронный элемент, в котором будет совмещено всё: изоляционная подложка, полупроводниковый слой и проводящие дорожки. Метод достаточно прост и не требует сложных манипуляций и дорогостоящего оборудования — только нанесение металла и отжиг. При этом проводимость в графитизированном слое будет такой же, как и в графене, а ее характер будет двумерным», — отметила Ольга Седельникова.

Нанесение металла — это не единственный способ локально трансформировать поверхность алмаза в графит. Оказалось, если воздействовать на подложку импульсным ультрафиолетовым лазером, будет происходить схожий процесс. При попадании лазерного луча на поверхность алмазной пленки энергия света мгновенно преобразуется в тепло, которое сильно разогревает тонкий верхний слой. Из-за быстрого разогрева этот слой моментально превращается в пар (происходит абляция), остаются небольшие углубления, так называемые абляционные кратеры. Одновременно графитизируются верхние слои толщиной около 400 нм. При этом можно нарисовать желаемую разводку (топологию интегральной платы) с высоким разрешением за минуты, в то время как отжиг занимает полчаса или час. На практике именно трансформация лазерным излучением больше подходит для масштабирования. 

Ученые прошлись лазером вдоль алмазной пленки и сформировали решетки с периодом 200—400 микрон. Уникальность этих структур заключается в том, что они полностью состоят из атомов углерода. Такие решетки действуют как специальные фильтры для сверхбыстрого светового излучения, способного менять частоту и направление волны. Их работа зависит от структуры графита на поверхности и формы самого покрытия.

«Еще до нас было много работ, когда графен помещали на алмаз, и получался быстрый транзистор. Вероятно, можно будет получить что-то подобное при конверсии алмаза в графен, что удешевит процесс. Изготовленная нами решетка также интересна для терагерцовой оптики, поскольку алмаз обладает низким собственным поглощением в этом частотном диапазоне. В ближайшем будущем именно на поликристаллах начнут происходить практические внедрения, поскольку они намного дешевле, а свойства близки к монокристаллам», — подытожила исследовательница.

Работа выполнена при поддержке Министерства науки и высшего образования РФ и Российского научного фонда, № 23-43-00017.

Ирина Баранова, “Наука в Сибири”
Изображения предоставлены исследовательницей

Sedelnikova O.V., Gorodetskiy D.V., Lavrov A.N., Grebenkina M.A., Fedorenko A.D., Bulusheva L.G., Okotrub A.V.
Transformation of the diamond surface with a thin iron coating during annealing and transport properties of the formed conductive layer
Synthetic Metals. 2024. V.307. 117675:1-8. DOI: 10.1016/j.synthmet.2024.117675

Нина Федоровна Захарчук, кандидат химических наук, ведущий научный сотрудник Аналитической лаборатории ИНХ СО РАН, посвятила науке более полувека. За 53 года работы в Инстиуте она стала автором свыше 200 научных публикаций.

Материал о ее пути в науку, об удивительных встречах и, конечно же, о том, как оставаться преданным науке десятилетиями - на странцах газеты Бумеранг от 26 июня 2025, №23 (1144), стр. 4 и 6.

 
Международная группа сотрудников ведущих университетов и научных организаций России и Франции в обширном междисциплинарном исследовании открыли новый путь к разработке высокочувствительных и биосовместимых термометров. Предложенный метод основан на использовании координационной химии люминесцентных двумерных материалов.
Материалы о совместных разработках с участием сотрудников Института представлены на сайте Российской академии наук (16.05.2025). 
 

Исследователи считают, что разработка открывает возможности для широкого спектра применения в биомедицине. Статья опубликована в престижном высокорейтинговом журнале Advanced Functional Materials (Q1, top 3 % SJR).

Научная группа синтезировала и продемонстрировала люминесцентную термометрию особого класса материалов — двумерных металл-органических каркасов. Авторы показали, что металл-органические соединения (Metal-organic frameworks, MOFs) могут представлять фундаментальный и коммерческий интерес для решения самых актуальных задач биомедицины, поскольку малоинвазивный и не токсичный для животных метод люминесцентной термометрии обеспечивает высокую точность и динамичность измерений с высоким пространственным разрешением, и открывает пути к созданию биосовместимых температурных сенсоров нового поколения.

Биотестирование MOF-нанолистов при введении в живой организм (Danio rerio)

В работе учёным удалось создать новые двумерные металл-органические каркасы, которые удовлетворяют требованиям биосовместимости и эффективной люминесцентной термометрии in vivo. В ходе работы были получены нанолисты, которые можно легко вводить в живые организмы без потери их функциональности длительное время. Основная часть работы проходила на базе сразу нескольких научных центров — Национального исследовательского университета ИТМО (Санкт-Петербург), Национального медицинского исследовательского центра им. В.А. Алмазова (Санкт-Петербург), Университета Лотарингии (Франция), Национального научного центра морской биологии им. А.В. Жирмунского ДВО РАН (Владивосток), при участии сотрудников Института неорганической химии им. А.В. Николаева СО РАН (Новосибирск) и других научных учреждений России и Китая.

Исследователи использовали биологическую модель — одних из самых распространённых модельных рыбок Danio rerio. Живучие, легко адаптируемые к воздействию рыбки, показали, как люминесцентные MOF- нанолисты эффективно меняют свой цвет в зависимости от температуры тела рыбок. Это стало возможным с применением современных методов оптики и световой микроскопии. При этом испытуемые рыбки не отличались от контрольной группы по поведению и выживали после внедрения MOFs. Данные подтверждают высокую биосовместимость, нетоксичность, стабильность и безопасность полученных люминесцентных термометров.

Рыбки Danio в аквариальной ННЦМБ ДВО РАН

Синтезированные MOF-нанолисты при введении в живой организм (Danio rerio) показали 100 % выживаемость животных, а также эффективную люминесцентную термометрию органов животного с точностью до 10 °C в диапазоне температур от 7 К до 300 К. Полученные данные могут стать основой для разработки высокочувствительных и биосовместимых люминесцентных термометров на основе координационных полимеров.

Результаты работы демонстрируют возможность безопасного использования новых люминесцентных термометров в живых организмах, сохраняя при этом их функциональность, что подчёркивает их потенциальное использование в области медицины, включая диагностику и терапию.

Источник: пресс-служба Минобрнауки России.

Maria Timofeeva, Yuliya Kenzhebayeva, Pavel Alekseevskiy, Anastasiia Efimova, Artem N. Abramov, Sergei Shipilovskikh, Alexander S. Novikov, Nikolay V. Somov, Dmitry I. Pavlov, Xiaolin Yu, Andrei S. Potapov, Pascal Boulet, Nikita Burzak, Aleksandra R. Knyazeva, Nan Li, Vyacheslav Dyachuk, Valentin A. Milichko "Topological Design of Pyrene-Based Metal-Organic Framework Nanosheets as a Luminescent Thermometer for Live Bioimaging" // Advanced Functional Materials. 2025. 2425904. DOI: 10.1002/adfm.202425904

Сибирские ученые разработали люминесцентный сенсор, способный обнаруживать четыре типа загрязнителей в воде: сульфаты, дигидрофосфаты, алюминий и галлий. Этот результат поможет быстро проверять качество воды в домашних условиях. Статья об этом опубликована в журнале Applied Organometallic Chemistry
Материалы о разработке сотрудников Института опубликованы в газете "Наука в Сибири" (19.06.2025 № 25, 21.05.2025 - эл. версия)  и представлены на сайте Российской академии наук (22.05.2025). 
 
Сотрудник лаборатории демонстрирует люминесцентный эффект Люминесцентный эффект
 

Для удобства использования сенсор в виде порошка вмешивают в гидрогель — вещество, по структуре похожее на пищевой желатин. Затем полученную массу распределяют тонким слоем по плоской поверхности, чтобы получилась полимерная пленка. На нее наносят каплю воды и светят ультрафиолетовым фонариком. Если в воде есть опасные вещества — пленка начинает светиться зеленым цветом: чем сильнее свечение, тем выше концентрация загрязнений. Чувствительность сенсора очень высокая: он способен обнаруживать минимальные количества загрязнителей, выявляя всего 35 миллиграммов вещества в 1 000 литров воды, что сравнимо с обнаружением чайной ложки соли в большом плавательном бассейне.

Люминесцентный сенсор позволяет быстро обнаруживать сульфаты. Ранее не существовало материалов, способных так точно их ловить, так как сульфат-ионы не имеют окраски, не изменяют кислотность воды и не поглощают свет, что делает их замаскированными для традиционных методов анализа и визуального обнаружения в воде. «Сейчас для обнаружения сульфатов используют гравиметрический метод, анализ занимает несколько часов. Наш сенсор делает это за секунды и с высокой точностью», — пояснил главный научный сотрудник лаборатории металлорганических координационных полимеров ИНХ СО РАН доктор химических наук Андрей Сергеевич Потапов.

Ученые планируют расширить линейку сенсоров для обнаружения других опасных веществ, например сейчас исследуют новую методику с чувствительным откликом на ртуть. Также в их планы входит создание детекторов — портативных устройств с полимерной пленкой внутри. Такой девайс поможет проверять на наличие токсинов воду в квартирах, на дачах, а также в походах.

 

Работа выполнена при поддержке Министерства науки и высшего образования РФ и Российского научного фонда, № 23-43-00017.

Подготовили студентки отделения журналистики
Гуманитарного института Новосибирского государственного университета
Марина Смолянинова и Дарья Обгольц для спецпроекта «Мастерская “Науки в Сибири”»

Фото авторов

Dudko E. , Pavlov D. , Ryadun A. , Guselnikova T. , Fedin V. , Yu X., Potapov A. "Lanthanum(III) Coordination Polymer Decorated With 2,1,3‐Benzoxadiazole Units for Sensitive Luminescent Recognition of Sulfate Anion" // Applied Organometallic Chemistry. 2025. V.39. N3. e70082:1-9. DOI: 10.1002/aoc.70082