Группа исследователей объединила полезные свойства фталоцианинов металлов и палладиевых мембран, чтобы создать активные слои датчиков для определения водорода.
Новости Сибирской науки, 11.12.2017
Новый датчик водорода будет бороться с загрязнениями и диагностировать болезни Новости@Rambler.ru, 09/12/2017
Новый датчик водорода будет бороться с загрязнениями и диагностировать болезни Индикатор (indicator.ru), 09/12/2017
Такая операция значительно увеличивает чувствительность сенсоров. Об исследовании ученых из Сибирского федерального университета (СФУ) и Института неорганической химии им. А.В. Николаева СО РАН (Новосибирск) сообщается в журналах Dyes and Pigments и International Journal of Hydrogen Energy.
С одной стороны, датчики водорода решают экологические задачи, среди которых - качественная и количественная оценка содержания различных газов в составе воздуха (например, опасных угарного газа или аммиака). Данные, полученные с помощью таких датчиков, позволят правильно выстроить стратегию борьбы с загрязнением. С другой стороны, есть и медицинский аспект: существует заболевание мальабсорбция, у носителей которого в выдыхаемом воздухе повышено содержание водорода. Если сделать высокочувствительные датчики, способные фиксировать небольшой рост концентрации водорода, это заболевание можно будет успешно диагностировать. Это исследование - еще один этап реализации крупного проекта, поддержанного Российским научным фондом и направленного на разработку высокочувствительных сенсоров для детектирования различных газов.
Детекторы, с которыми работали авторы статьи, состоят из трех слоев. Внизу расположена подложка (она же - проводящий электрод), на нее наносится пленка из фталоцианинов (гетероциклические соединения темно-синего цвета), а поверх этой пленки - палладий. Создать такой датчик непросто. Для этого необходимо получить тонкую пленку фталоцианинов, а потом "положить" сверху слой палладия. Для этого используются прекурсоры - органические соединения, содержащие атомы палладия. В результате нагревания они разлагаются, органические фрагменты испаряются, а атомы металла образуют слой нужной структуры и толщины.
Что касается функционирования датчика, то водород достаточно легко проникает сквозь палладий и, поступая на поверхность пленки фталоцианина, изменяет ее проводимость.
"Сами по себе тонкие пленки фталоцианинов являются полупроводниками. И именно по изменению проводимости мы можем судить о том, "прицепился" водород или нет, и в какой концентрации он содержится в воздухе", - рассказал соавтор исследования Павел Краснов, кандидат физико-математических наук, старший научный сотрудник Института нанотехнологий, спектроскопии и квантовой химии СФУ.
Авторы работы впервые получили и исследовали кристаллическую структуру тонких пленок палладиевых фталоцианинов, а также то, как меняют ее структуру атомы фтора в качестве заместителей. Фталоцианин - плоская молекула, на краях которой находятся атомы водорода. Если вместо атома водорода встает другой атом (в данном случае фтора), он называется заместителем.
Интерес к таким объектам появился у ученых после полученных ранее ими же результатов. Они показали, что введение в структуру фталоцианинов атомов фтора увеличивает сенсорный отклик (индикатор чувствительности) этих соединений при взаимодействии с молекулами газов. Дело в том, что фтор - более электроотрицательный элемент по сравнению с водородом, и способен в большей степени "оттягивать" на себя электроны с остальных атомов фталоцианина, включая и атом металла, находящийся в центре. Увеличение положительного заряда атома металла способствует более сильному связыванию молекул газов, поскольку такая связь возникает преимущественно по донорно-акцепторному механизму. Молекула газа является донором электронов (отдает электроны), а атом металла - их акцептором (присоединяет их).
Свою гипотезу ученые из СФУ подтвердили с помощью квантово-химических вычислений, а их коллеги из Института неорганической химии СО РАН - в результате непосредственного проведения экспериментальных работ, позволивших в конечном итоге получить прототипы датчиков.
В дальнейшем ученые хотят проверить возможность использования различных подложек - "посадить" фталоцианины не на электроды, а на углеродные структуры: графен или углеродные нанотрубки. Такая замена позволит получить более сильный отклик, то есть сделать датчик более чувствительным к водороду. Насколько именно вырастет чувствительность, могут показать только эксперименты. Второе перспективное направление исследований - сделать слой палладия более тонким (также для повышения отклика датчика).