Сотрудники Института неорганической химии им. А. В. Николаева СО РАН синтезировали противоопухолевые соединения на основе комплексов меди(II) с 1H-тетразолил-5-уксусной кислотой и дополнительными лигандами. В экспериментах in vitro показана их активность против раковых клеточных линий. Результаты работы опубликованы в New Journal of Chemistry.

Материал о новых соединениях представлен на страницах газеты Наука в Сибири (№ 32, 10.08.2023)

Исследование проводили ученые Института неорганической химии им. А. В. Николаева СО РАН совместно с коллегами из Северо-Кавказского зонального научно-исследовательского ветеринарного института (Новочеркасск) и Федерального исследовательского центра фундаментальной и трансляционной медицины.

«Комплексные соединения, которым посвящена эта публикация, по своей структуре являются аналогами соединений серии Casiopeinas®. Это разнолигандные комплексы меди, способные проявлять биологическую активность, — рассказывает старший научный сотрудник ИНХ СО РАН кандидат химических наук Елизавета Викторовна Лидер. — В серии Casiopeinas® в качестве лигандов выступают анионы аминокислот либо ацетилацетоната, а также производные 2,2'-бипиридина и 1,10 фенантролина. Последние также входят и в наши соединения, но в качестве второго лиганда мы используем производные тетразола. В этом исследовании мы работали с 1Н-тетразолил-5-уксусной кислотой».

*Лиганды — это органические или неорганические молекулы, которые координируются к центральному иону металла.

Тетразол-уксусная кислота (1H-тетразолил-5-уксусная кислота) была выбрана для того, чтобы повысить растворимость комплексных соединений и сделать их более подходящими для биомедицинских применений.

Полученные комплексы ученые охарактеризовали c помощью ИК-спектроскопии, рентгенофазового, элементного и термогравиметрического анализов, а также с использованием комбинации различных методов изучили, как соединения ведут себя в растворе. «В этой публикации нам удалось показать, что в растворе происходит перераспределение лигандов. Одна форма получается разнолигандная, она содержит производные 2,2'-бипиридина и 1,10-фенантролина, 1Н-тетразолил-5-уксусную кислоту, но в другом соотношении по сравнению с исходным соединением. Вторая включает в себя только комплекс меди с 1Н-тетразолил-5-уксусной кислотой. Кроме того, мы продемонстрировали, что, несмотря на перераспределение лигандов, эти формы остаются стабильными в течение длительного времени», — говорит научный сотрудник ИНХ СО РАН кандидат химических наук Юлия Андреевна Голубева.

Затем ученые исследовали in vitro цитотоксическую активность полученных соединений, а именно то, как они воздействуют на раковые клетки человека. Для эксперимента были выбраны четыре клеточные линии: две опухолевые (гепатокарцинома и карцинома молочной железы) и две обычные (фибробласты человека и эмбриональные клетки почек). На первых предполагалось посмотреть, насколько хорошо препарат убивает опухолевые клетки. Нераковые клетки использовались для определения так называемого индекса селективности: он может показать, насколько избирательно действует соединение именно на опухолевые клеточные линии.

Клетки поместили в специальные культуральные планшеты, где они сначала культивировались в течение 24 часов, а затем к ним добавляли раствор, содержащий полученные комплексные соединения. Через 48 часов сравнивалась выживаемость клеток после воздействия тестируемых соединений с выживаемостью контрольных клеток, не обработанных комплексами. С помощью специального прибора (IN Cell Analyzer 2200) ученым удалось посчитать количество живых и мертвых клеток, а также тех, что пребывают в состоянии апоптоза, и определить концентрацию полуингибирования, которая показывает, при какой дозе препарата погибают 50 % клеток. 

«Эксперимент показал, что нам удалось получить соединение с очень высоким индексом селективности, равным 19. То есть это вещество в 19 раз лучше убивает раковые клеточные линии по отношению к нераковым. Грубо говоря, на 100 раковых клеток оно будет уничтожать лишь 5 здоровых. В медицинской среде неплохим считается уже индекс селективности больше 3—4», — объясняет Елизавета Лидер.

Также полученные комплексы меди с 1H-тетразолил-5-уксусной кислотой и дополнительными лигандами проверили на антибактериальную, противогрибковую и протистоцидную активность (на бактериях E. coli и S. aureus, грибах вида P. italicum и простейших вида Colpoda steinii). «Против бактерий и грибов эффекта показано не было, зато протистоцидная активность у некоторых из наших соединений была сопоставима с медицинским препаратом хлорохином», — рассказывает аспирантка ИНХ СО РАН Екатерина Андреевна Ермакова.

В Северо-Кавказскогом зональном научно-исследовательском ветеринарном институте, кроме противомикробной активности, проверили острую токсичность комплексов на мышах. На данный момент выявлена максимальная переносимая доза. «В дальнейшем мы планируем определить полулетальную дозу, при которой половина животных должна выжить. По ее величине можно будет делать выводы о применимости полученных комплексов в медицине. Мы должны показать, что терапевтические концентрации препарата не оказывают летального воздействия на живые организмы», — говорит Елизавета Лидер.

Исследование выполнено в рамках гранта РНФ № 20-73-10207.

Диана Хомякова, Наука в Сибири (№32, 10.08.2023)

Иллюстрация предоставлена исследователями
 

Ученые Института неорганической химии им. А. В. Николаева СО РАН и Новосибирского института органической химии им. Н. Н. Ворожцова СО РАН синтезировали неорганические соединения, в которых может происходить фотоперенос протона. Им удалось создать умные люминофоры с двумя полосами люминесценции. Исследования опубликованы в международных журналах Dalton Transactions и Journal of Photochemistry and Photobiology A: Chemistry.

Материал о новых соединениях представлен на страницах газеты Наука в Сибири (№ 31, 03.08.2023)

 

«Нам было интересно, сможем ли мы осуществить реакцию фотопереноса протона в соединениях, которые могут быть отнесены к классу неорганических (содержат ион металла), так как большинство соединений, способных демонстрировать фотоперенос протона, органические. Многие из них имеют низкий квантовый выход люминесценции, поддаются влиянию процессов, снижающих ее эффективность. Оказалось, что координация ионов металлов к лигандам (молекулам, которые могут образовывать связи с ионами металлов) способна решить эту проблему, повысить квантовые выходы люминесценции. Такое взаимодействие органической молекулы и ионов металла приводит к образованию соединений, называемых комплексными. Но есть сложность: если органическое соединение, способное проявлять фотоперенос протона, взаимодействует с ионом металла, он вытесняет подвижный протон и становится на его место. Нашей задачей было попробовать синтезировать такие комплексные соединения, которые были бы способны проявлять фотоперенос протона. Первый шаг в решении этой задачи — создать органические молекулы, в которых были бы группы, взаимодействующие с ионами металлов, тогда ионы металла не будут вытеснять подвижный протон», — рассказывает руководитель проекта, ведущий научный сотрудник Института неорганической химии им. А. В. Николаева СО РАН доктор химических наук Марк Борисович Бушуев.

Процессы переноса протона распространены в природе. Они включают, например, всем известные реакции между кислотами и основаниями. Исследователи изучают процессы переноса протона, происходящие не между разными молекулами, а в пределах одной, где одна часть молекулы принимает протон (акцептор), а другая отдает (донор). Взаимодействие между этими частями называется водородной связью. Протон может находиться в протонодонорной части молекулы, а может переходить к протоноакцепторной. Когда молекулы поглощают квант света, происходит перераспределение электронной плотности, протон это чувствует и переходит на протоноакцепторную часть молекулы. Этот процесс можно назвать фотоиндуцированным переносом протона или внутримолекулярным переносом протона в возбужденном состоянии (ESIPT, excited state intramolecular proton transfer).

«Благодаря тому, что у нас две формы молекулы, люминесценция может проявляться в разных областях спектра. Например, одна в зеленой, другая в голубой. Когда протон находится у протонодонорной части молекулы — это нормальная форма, когда у протоноакцепторной — таутомерная. В этом отличие умных люминофоров от классических. Последние существуют только в одной форме, в них нет такого подвижного протона, поэтому они проявляют лишь одну полосу люминесценции», — комментирует младший научный сотрудник Института неорганической химии им. А. В. Николаева СО РАН Никита Александрович Шеховцов.

Соединения с фотопереносом протона относятся к классу умных люминофоров и отличаются от классических, проявляют другие свойства. Люминесценция таких люминофоров зависит от разных внешних воздействий, например температуры. При комнатной температуре свечение может находиться в одной области спектра, а при температуре жидкого азота (77 К) вещество может резко поменять положение полосы эмиссии и светиться по-другому. Также ученые обнаружили зависимость эмиссии от энергии возбуждающего света, это очень редкое свойство. Когда они возбуждают молекулу различными видами волн (квантами света с разной длиной волны), цвет эмиссии начинает меняться.

«Умные люминофоры могут использоваться для изготовления органических светоизлучающих диодов нового поколения OLED. Они есть, например, в дисплеях современных телевизоров. Большинство из них основано на классических люминофорах с одной полосой эмиссии люминесценции. Наши соединения могут применяться для изготовления новых диодов, которые имеют две полосы эмиссии. Когда есть две полосы, появляется возможность переходить к новым цветовым диапазонам, получать качественное белое свечение. Полученные нами соединения были бы хорошими отечественными аналогами полупроводников зарубежных производителей. Еще один вариант применения — биовизуализация живых клеток. В данном случае возбуждение молекул люминофора, введенных в клетку, позволяет видеть определенное свечение живых или раковых клеток», — рассказывает Никита Шеховцов.

Умные люминофоры можно получить разными способами, и создание предпосылок для фотопереноса протона в молекуле — один из них. Самое важное при дизайне молекул, которые могли бы демонстрировать фотоперенос протона, — сформировать специальный сайт (место), где протон сможет переходить от протонодонорной части к протоноакцепторной.

Для исследования синтезированных веществ ученые применяют как экспериментальные, так и теоретические методы. Сначала они проводят эксперимент, регистрируют спектр эмиссии, а уже после делают квантово-химические расчеты. Основное свойство, люминесценцию, а также ее характеристики (времена жизни возбужденных состояний, квантовый выход) измеряют с помощью приборов. Чтобы понять, за счет каких электронных переходов в молекуле происходит свечение и установить механизмы люминесценции, проводят квантово-химические расчеты. По результатам эксперимента и расчетов ученые делают выводы, что нужно ввести в молекулу, чтобы повысить квантовый выход эмиссии, какие части молекулы необходимо модифицировать.

«В итоге участникам нашего проекта удалось синтезировать серию соединений на основе имидазола и пиримидина. Наш коллектив синтезировал как сами лиганды, так и комплексные соединения цинка с этими лигандами. Изучили их люминесценцию и установили, как координация иона металла влияет на положение полосы люминесценции. Также мы смогли понять, как меняется люминесценция при переходе от твердого состояния к раствору, и объяснили это с помощью методов квантовой химии. Помимо этого, оказалось, что в некоторых наших соединениях нарушается правило Каши, а это одно из фундаментальных правил фотофизики, которое не соблюдается в редких случаях. Правило простое: у молекулы есть основное состояние (S0), а есть возбужденные (Sn, n = 1, 2, 3, …), и в большинстве молекул люминесценция происходит с самого нижнего возбужденного состояния S1 в S0. В наших же соединениях люминесценция проходит из второго возбужденного состояния S2 в S0. Исследование электронного строения этих молекул методами квантовой химии позволило нам установить причины, ответственные за такую нетипичную люминесценцию», — делится Никита Шеховцов.

Дальше исследователи планируют совершенствовать дизайн соединений, проявляющих фотоперенос протона: сначала рассчитывать молекулы методами квантовой химии, выбирать наиболее эффективные и синтезировать те, которые могут потенциально обладать хорошими фотофизическими свойствами.

Исследование выполнено в рамках гранта РНФ № 21-13-00216.

Наука в Сибири, № 31, 03.08.2023

Полина Щербакова. Фото предоставлены исследователями, а также из открытых источников (обложка)

Разработки сотрудников ИНХ СО РАН - в репортаже Вести Новосибирск. "Победить рак пытаются Новосибирские учёные при поддержке Росийского научного фонда, они на основе платиновых металлов - иридия и палладия - разработали вещества, способные убивать клетки опухоли".

Вести Новосибирск, 01.08.2023

Иридий, как и палладий, платина, золото - вещества благородные. Редкие. Дорогие. Учёные давно доказали - в соединении с другими веществами они, как рыцари, способны сражаться с самыми коварными онкологическими болезнями. Но после такого лечения нужна сложная реабилитация - лечение влияет и на здоровые клетки организма. Задача учёных - минимизировать такие последствия. Они экспериментируют, смешивая благородные металлы с другими веществами. Смеси называют легандами.

«Поскольку эта область изначально в качестве лекарственных препаратов именно с диаминовым соединением остаётся востребованной. И введение таких новых легандов, как наши диаминовые леганды, способно продвинуть эту область вперед, поскольку практически таких исследований не было», - рассказывает младший научный сотрудник Института неорганической химии СО РАН Николай Ромашев.

Благородные металлы в паре со специфическими азотосодержащими молекулами молниеносно вступают в окислительно-восстановительные реакции. Образуются активные свободные радикалы, частицы. Они-то и способны разрушать раковые клетки. Новосибирские учёные создали такие гибриды на основе иридия, палладия.

«Они способны взаимодействовать с молекулами ДНК, входить в их структуру. Что приводит к нарушению их функций. Это один из механизмов, а второй механизм действия - это генерация активных форм кислорода, которые и дальше будут усиливать окислительный стресс, который приведёт к гибели раковой клетки», - рассказывает заведующий лабораторией Института неорганической химии СО РАН Артём Гущин.

Теперь учёным предстоит изучить, как вещество взаимодействует не только с раковыми клетками, но и с живыми. На первых экспериментах соединения уже зарекомендовали себя положительно.

Теперь учёным предстоит подтвердить работу двойного механизма действия соединений иридия в организме человека. Но пока исследования будут проходить только на клеточном уровне. Кстати, химики уже подтвердили - гибель раковых клеток происходит и после их взаимодействия с другими соединениями на основе палладия. А это значит, гибель раковых клеток возможна и после их взаимодействия с соединениями иридия.

 АНАСТАСИЯ ПУТИНЦЕВА, Вести Новосибирск

Поиск, 14.09.2023 Использование «наноколбы» позволило избежать появления побочных продуктов при органическом синтезе

Ученые предложили новый высокоспецифичный способ синтеза органических соединений, состоящих из трех сочлененных между собой углеродных колец. В отличие от существующих подходов, новая методика позволяет точно контролировать, какими участками присоединяются кольца, и с вероятностью до 98% получать геометрически абсолютно одинаковые продукты. Это важно, поскольку образуемые таким образом вещества используются при синтезе биологически активных соединений и некоторых лекарств, и даже небольшие изменения в геометрии молекул могут радикально влиять на их активность. Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Chemical Communications.

Органические молекулы, состоящие из нескольких сочлененных между собой углеродных колец, часто используются в качестве предшественников для синтеза лекарств и биологически активных соединений, таких как стероиды, артемизинин, таксол и его производные. Получить соединение, в структуру которого входят, например, два или три кольца, позволяют реакции димеризации между двумя молекулами, каждая из которых содержит одно углеродное кольцо. Так, в частности, димеризацию циклопентенона —молекулы в виде кольца из пяти атомов углерода, к которому присоединен один атом кислорода, — проводят, освещая исходное вещество ультрафиолетом.

Несмотря на простоту подхода, он оказывается недостаточно эффективным. Дело в том, что углеродные кольца соединяются каждый раз разными участками, в результате чего атомы кислорода в образуемых димерах оказываются «выступающими» в разные стороны. Так, например, если атомы кислорода находятся по одну сторону от условной оси молекулы, то такое расположение называют «голова-к-голове», а если по разные — «голова-к-хвосту». При этом в любом синтезе нужно быть уверенным, что получается лишь один из возможных вариантов, поскольку даже небольшие различия в пространственном строении молекул могут сильно влиять на их биологическую активность. В противном случае возникает необходимость в дополнительных стадиях разделения и очистки целевого продукта, сложных из-за сходства физических и химических свойств у различных димеров.

Ученые из Института неорганической химии имени А. В. Николаева СО РАН (Новосибирск) предложили подход, позволяющий избирательно получать нужный вариант молекулы при димеризации циклопентенона, который часто используется при синтезе лекарственных препаратов. Авторы провели реакцию в порах металлорганического каркасного соединения — пористого полимера, который можно сравнить с губкой. Он содержит множество пустот, размер которых не превышает нанометра (миллионной доли миллиметра). Эти поры послужили миниатюрными «колбами», в которых осуществлялся синтез.

Каждая «наноколба» может вместить лишь две молекулы циклопентенона. Кроме того, попадая в такие пустоты, молекулы связываются с металлорганическим каркасом строго определенным образом, благодаря чему все они оказываются одинаково ориентированы в пространстве. В результате взаимодействовать между собой они могут лишь одной из возможных «сторон», что обеспечивает избирательность синтеза. Димеризацию исследователи проводили с помощью мягкого ультрафиолетового света.

Упаковка молекул циклопентенона до облучения (слева) и его димера после облучения (справа) в порах металлорганического каркаса. Источник: Павел Демаков.

Авторы проанализировали структуру полученных димеров и определили, что 98% из них состояли из двух молекул циклопентенона, ориентированных «голова-к-хвосту». Это подтвердило высокую избирательность предложенного метода.

«Высокоупорядоченные поры металлорганического каркаса помогли молекулам циклопентенона ориентироваться так, чтобы синтез прошел максимально специфично. Подобной избирательности не позволяют достичь ни синтез в обычных растворах, ни реакции с применением катализаторов. Предложенный метод поможет упростить производство сложных лекарств и других биологически активных соединений, содержащих в своем составе фрагменты циклопентенона, например различные стероиды, перспективные противораковые и противогрибковые средства Plumisclerin A, Paesslerin A, Hippolachnin A, Massarinolin A. В дальнейшем мы планируем протестировать селективный синтез в нанопорах для других, более сложных органических соединений», — рассказывает ведущий исполнитель проекта, поддержанного грантом РНФ, Павел Демаков, кандидат химических наук, сотрудник лаборатории металлорганических координационных полимеров Института неорганической химии имени А. В. Николаева СО РАН.

Павел Демаков контролирует процесс димеризации циклопентенона в металлорганическом каркасе. Источник: Павел Демаков.

Пресс-служба Российского научного фонда

 

В журнале Chemical Communications (IF = 4,9) опубликована статья сотрудников Института Демакова П.А., Дыбцева Д.Н. и Федина В.П.

  1. "Diastereoselective guest-shape dependent [2+2]-photodimerization of 2-cyclopenten-1-one trapped within a metal-organic framework", Demakov P.A., Dybtsev D.N., Fedin V.P. // Chemical Communications, 2023, 59, 9380 - 9383. DOI: 10.1039/D3CC02162A Посмотреть статью 

Позиции двух молекул 2-метил-2-циклопентен-1-она до облучения (слева) и его димера (диастереомер вида «анти- голова-к-хвосту», справа) после облучения. Позиции гостевых молекул и ориентация реагента стабилизированы в апертуре каркаса-хозяина водородными связями CHttdc…Oкетон (оранжевая пунктирная линия). Данные РСА монокристаллов.

Пористые металл-органические каркасы обладают хорошо упорядоченной системой наноразмерных пустот, благодаря чему могут проявлять селективные сорбционные, сенсорные, каталитические свойства. Монокристаллы металл-органического каркаса [Eu2(DMF)4(ttdc)3] (DMF = диметилформамид, ttdc2– = анионы транс-тиенотиофен-2,5-дикарбоновой кислоты) использованы для включения молекул циклических сопряженных непредельных кетонов как гостей в поры структурно жесткого каркаса-хозяина. Подобные кетоны (2-циклопентен-1-он, его гомологи и производные) димеризуются при облучении ультрафиолетовым светом по механизму [2+2]-циклоприсоединения. Эта реакция, идущая в мягких условиях, применяется в синтезе сложных биоактивных соединений для сборки полициклического углеводородного скелета. Однако димеризация кетонов с небольшими размерами молекул, при ее проведении в растворах, приводит к образованию трудноразделимой смеси геометрических и оптических изомеров, что осложняет выделение и дальнейшеее использование целевого продукта.

Адсорбция кетонов в поры металл-органического каркаса [Eu2(DMF)4(ttdc)3] позволила упорядочить позиции и ориентацию гостевых молекул в кристалле. Облучение полученных монокристаллов мягким УФ-светом с длиной волны 365 нм привело к образованию исключительно димеров вида «анти- голова-к-хвосту» в случае 2-циклопентен-1-она и его 2-метильного производного (см. рисунок). Протекание данной реакции в порах каркаса-хозяина подтверждено напрямую методом РСА для монокристаллов после облучения. 1H-ЯМР анализ смеси продуктов облучения 2-циклопентен-1-она после её полной экстракции из каркаса показал 94-98% селективность образования димера вида «анти- голова-к-хвосту», в то время как в растворах или при гомогенном катализе она находится в диапазоне 40-60%. Конверсия реагента может достигать 78% при облучении в течение 3 часов при 190 К. Таким образом, пористый металл-органический каркас [Eu2(DMF)4(ttdc)3] представляет собой удобный и высокоселективный «нанореактор» для реакций [2+2]-димеризации непредельных кетонов.

Работа выполнена при финансовой поддержке проекта РНФ № 19-73-20087.