Результаты исследований сотрудников Института – на страницах "Наука в Сибири".

"Мы всегда стараемся уберечься от инфекций: моем руки перед едой, чихаем в платок, протираем руки после автобусных поручней. Однако есть места, невольно переполненные инфекциями: в частности, больницы и поликлиники. Конечно, в помещениях регулярно проводится дезинфекция, но она не способна защитить от всех заболеваний. Для предупреждения таких случаев сибирские ученые разработали специальные антибактериальные пленки."

Наука в Сибири, 11 июля 2018 г., эл. версия

А также Телеканал ОТСТАСС

Нозокомиальные (госпитальные) инфекции распространяются внутри больницы: человек приходит с травмой ноги, а уходит с совершенно другой болезнью. Возбудителями могут стать золотистый стафилококк и синегнойная палочка, также активно распространяются пневмония, туберкулез и т.д. Происходит это следующим образом: один чихает, второй — ставит руку на стойку регистратуры, врачебный стол, затем вытирает лицо... Конечно, существует процедура кварцевания: несколько раз в день включается ультрафиолетовая лампа, которая дезинфицирует помещение. Кроме того, подоконники и столы протираются хлоркой, но иногда персонал просто не успевает убрать кабинет после очередного пациента.

«Возникла идея создать некие самостерилизующиеся и безвредные для человека поверхности, при попадании на которые бактерии будут погибать. Известный пример такого материала — серебро: его ионы токсичны для микроорганизмов. Однако это не очень дешево, плюс непокрытое серебро окисляется и стирается. К тому же, если, например, все время есть из серебряной посуды, развивается дисбактериоз — ведь в организме есть и полезные бактерии», — рассказывает старший научный сотрудник Института неорганической химии им. А.В. Николаева СО РАН кандидат химических наук Михаил Александрович Шестопалов.

Коллектив исследователей: аспирант ИНХ СО РАН Дарья Владимировна Евтушок, Михаил Александрович Шестопалов, студент ФЕН НГУ Вячеслав Александрович Бардин

Тогда ученые решили обратить внимание на вещества, работающие на принципе фотодинамической инактивации микроорганизмов. Схожий принцип используется при фотодинамической терапии раковых заболеваний: пациенту вводят нетоксичные соединения, которые облучаются светом с определенной длиной волны, что активирует их способность производить активные формы кислорода (АФК), убивающие опухоль. В качестве фотоактивных компонентов в антибактериальных материалах специалисты ИНХ СО РАН предложили использовать кластерные комплексы вольфрама и молибдена: под воздействием света (солнечного или искусственного) они эффективно генерируют синглетный кислород — один из видов АФК, способный уничтожить любую попавшуюся ему на пути бактерию. Такой кислород существует лишь долю секунды, а потому представляет опасность лишь на поверхности материала. Более того, активированная поверхность безвредна для человека, поскольку роговой слой кожи не восприимчив к подобным воздействиям.

Существует и другой вид антибактериальных материалов: бактерия, попадая на них, просто «скатывается». Похожим образом работает обычное мыло — оно зачастую не убивает, а смывает микроорганизмы с рук. Получается, можно сделать покрытие, на котором бактерии не смогут закрепиться — так называемое супергидрофобное, отталкивающее воду.

«В нашей работе мы решили объединить эти способы борьбы. Взяли близкое к супергидрофобному вещество — модифицированный тефлон — и добавили в него наш активный компонент (вольфрам или молибден). Этот тефлон кислородопроницаем, что важно, так как включенным в него комплексам необходим доступ к воздуху для генерации синглетного кислорода. В итоге бактерии либо смываются, либо (особо цепкие) уничтожаются под воздействием света», — добавляет Михаил Шестопалов.

Цвет антибактериальных пленок зависит от количества кластерных комплексов

Такие эксперименты уже были успешно проведены в Федеральном исследовательском центре фундаментальной и трансляционный медицины в лаборатории экспериментального моделирования и патогенеза инфекционных заболеваний кандидатом биологических наук Александром Юрьевичем Алексеевым. Работа ученых была поддержана грантом президента Российской Федерации.

Такие пленки, словно полиэтиленовые, натягиваются на поверхности, будь то врачебный стол или стойка в поликлинике. Кроме того, модифицированный тефлон способен растворяться в нетрадиционных растворителях, поэтому из него можно сделать прозрачный лак и нанести куда угодно — это на порядок снизит перенос и распространение различных заболеваний. Прежде всего, пленкой необходимо покрывать пол, потому что через ноги переносится немало инфекций. При желании некоторое медицинское оборудование (капельницы, трубки) также реально делать с этим материалом. Ученый уверен: в зависимости от инвестора и его требований можно будет реализовать разработку в значимых масштабах даже за год.

Алёна Литвиненко

Фото автора 

В журнале Sensors Actuators B (ИФ 5.667) опубликована статья с участием сотрудникa Института Басовой Т.В.

“3D SWCNTs-coumarin hybrid material for ultra-sensitive determination of quercetin antioxidant capacity”. Şenocak A., Koksoy B., Demirbaş E, Basova T. Durmuş M. // Sensors Actuators B. 2018, 267, P. 165-173. DOI: 10.1016/j.snb.2018.04.012 Посмотреть статью

ИНХ СО РАН coumarin

Схематическое представление сенсора на кверцетин

По реакции click chemistry (азид-алкинового циклоприсоединения) между углеродными нанотрубками (SWCNT), содержащими азидные группы, и 7-пропинилокси-3-(p- пропинилоксифенил)кумарином синтезирован 3D гибридный материал SWCNT-coumarine, обладающий пористой структурой. Показано, что стеклоуглеродный электрод, модифицированный полученным 3D гибридным материалом, может успешно применяться для определения кверцетина в воде и различных марках чая методом дифференциально-импульсной полярографии. При этом предел обнаружения кверцетина составляет 20 нM.

В журнале Angewandte Chemie – International Edition (ИФ 12.102) опубликована статья с участием сотрудника Института д.х.н. Конченко С.Н., иллюстрация к статье вынесена на обложку журнала.

22 июня в 10-00 в конференц-зале Института состоится доклад «Redox Heterocycles as Linkers in Coordination Rods and Polymers». Докладчик - профессор Реней Бурей (René T. Boeré), университет Летбриджа, Канада.

ИНХ СО РАН Boere