Ученые Института неорганической химии им. А. В. Николаева СО РАН и Новосибирского института органической химии им. Н. Н. Ворожцова СО РАН синтезировали неорганические соединения, в которых может происходить фотоперенос протона. Им удалось создать умные люминофоры с двумя полосами люминесценции. Исследования опубликованы в международных журналах Dalton Transactions и Journal of Photochemistry and Photobiology A: Chemistry.
Материал о новых соединениях представлен на страницах газеты Наука в Сибири (№ 31, 03.08.2023)
«Нам было интересно, сможем ли мы осуществить реакцию фотопереноса протона в соединениях, которые могут быть отнесены к классу неорганических (содержат ион металла), так как большинство соединений, способных демонстрировать фотоперенос протона, органические. Многие из них имеют низкий квантовый выход люминесценции, поддаются влиянию процессов, снижающих ее эффективность. Оказалось, что координация ионов металлов к лигандам (молекулам, которые могут образовывать связи с ионами металлов) способна решить эту проблему, повысить квантовые выходы люминесценции. Такое взаимодействие органической молекулы и ионов металла приводит к образованию соединений, называемых комплексными. Но есть сложность: если органическое соединение, способное проявлять фотоперенос протона, взаимодействует с ионом металла, он вытесняет подвижный протон и становится на его место. Нашей задачей было попробовать синтезировать такие комплексные соединения, которые были бы способны проявлять фотоперенос протона. Первый шаг в решении этой задачи — создать органические молекулы, в которых были бы группы, взаимодействующие с ионами металлов, тогда ионы металла не будут вытеснять подвижный протон», — рассказывает руководитель проекта, ведущий научный сотрудник Института неорганической химии им. А. В. Николаева СО РАН доктор химических наук Марк Борисович Бушуев.
Процессы переноса протона распространены в природе. Они включают, например, всем известные реакции между кислотами и основаниями. Исследователи изучают процессы переноса протона, происходящие не между разными молекулами, а в пределах одной, где одна часть молекулы принимает протон (акцептор), а другая отдает (донор). Взаимодействие между этими частями называется водородной связью. Протон может находиться в протонодонорной части молекулы, а может переходить к протоноакцепторной. Когда молекулы поглощают квант света, происходит перераспределение электронной плотности, протон это чувствует и переходит на протоноакцепторную часть молекулы. Этот процесс можно назвать фотоиндуцированным переносом протона или внутримолекулярным переносом протона в возбужденном состоянии (ESIPT, excited state intramolecular proton transfer).
«Благодаря тому, что у нас две формы молекулы, люминесценция может проявляться в разных областях спектра. Например, одна в зеленой, другая в голубой. Когда протон находится у протонодонорной части молекулы — это нормальная форма, когда у протоноакцепторной — таутомерная. В этом отличие умных люминофоров от классических. Последние существуют только в одной форме, в них нет такого подвижного протона, поэтому они проявляют лишь одну полосу люминесценции», — комментирует младший научный сотрудник Института неорганической химии им. А. В. Николаева СО РАН Никита Александрович Шеховцов.
Соединения с фотопереносом протона относятся к классу умных люминофоров и отличаются от классических, проявляют другие свойства. Люминесценция таких люминофоров зависит от разных внешних воздействий, например температуры. При комнатной температуре свечение может находиться в одной области спектра, а при температуре жидкого азота (77 К) вещество может резко поменять положение полосы эмиссии и светиться по-другому. Также ученые обнаружили зависимость эмиссии от энергии возбуждающего света, это очень редкое свойство. Когда они возбуждают молекулу различными видами волн (квантами света с разной длиной волны), цвет эмиссии начинает меняться.
«Умные люминофоры могут использоваться для изготовления органических светоизлучающих диодов нового поколения OLED. Они есть, например, в дисплеях современных телевизоров. Большинство из них основано на классических люминофорах с одной полосой эмиссии люминесценции. Наши соединения могут применяться для изготовления новых диодов, которые имеют две полосы эмиссии. Когда есть две полосы, появляется возможность переходить к новым цветовым диапазонам, получать качественное белое свечение. Полученные нами соединения были бы хорошими отечественными аналогами полупроводников зарубежных производителей. Еще один вариант применения — биовизуализация живых клеток. В данном случае возбуждение молекул люминофора, введенных в клетку, позволяет видеть определенное свечение живых или раковых клеток», — рассказывает Никита Шеховцов.
Умные люминофоры можно получить разными способами, и создание предпосылок для фотопереноса протона в молекуле — один из них. Самое важное при дизайне молекул, которые могли бы демонстрировать фотоперенос протона, — сформировать специальный сайт (место), где протон сможет переходить от протонодонорной части к протоноакцепторной.
Для исследования синтезированных веществ ученые применяют как экспериментальные, так и теоретические методы. Сначала они проводят эксперимент, регистрируют спектр эмиссии, а уже после делают квантово-химические расчеты. Основное свойство, люминесценцию, а также ее характеристики (времена жизни возбужденных состояний, квантовый выход) измеряют с помощью приборов. Чтобы понять, за счет каких электронных переходов в молекуле происходит свечение и установить механизмы люминесценции, проводят квантово-химические расчеты. По результатам эксперимента и расчетов ученые делают выводы, что нужно ввести в молекулу, чтобы повысить квантовый выход эмиссии, какие части молекулы необходимо модифицировать.
«В итоге участникам нашего проекта удалось синтезировать серию соединений на основе имидазола и пиримидина. Наш коллектив синтезировал как сами лиганды, так и комплексные соединения цинка с этими лигандами. Изучили их люминесценцию и установили, как координация иона металла влияет на положение полосы люминесценции. Также мы смогли понять, как меняется люминесценция при переходе от твердого состояния к раствору, и объяснили это с помощью методов квантовой химии. Помимо этого, оказалось, что в некоторых наших соединениях нарушается правило Каши, а это одно из фундаментальных правил фотофизики, которое не соблюдается в редких случаях. Правило простое: у молекулы есть основное состояние (S0), а есть возбужденные (Sn, n = 1, 2, 3, …), и в большинстве молекул люминесценция происходит с самого нижнего возбужденного состояния S1 в S0. В наших же соединениях люминесценция проходит из второго возбужденного состояния S2 в S0. Исследование электронного строения этих молекул методами квантовой химии позволило нам установить причины, ответственные за такую нетипичную люминесценцию», — делится Никита Шеховцов.
Дальше исследователи планируют совершенствовать дизайн соединений, проявляющих фотоперенос протона: сначала рассчитывать молекулы методами квантовой химии, выбирать наиболее эффективные и синтезировать те, которые могут потенциально обладать хорошими фотофизическими свойствами.
Исследование выполнено в рамках гранта РНФ № 21-13-00216.
Наука в Сибири, № 31, 03.08.2023
Полина Щербакова. Фото предоставлены исследователями, а также из открытых источников (обложка)
Разработки сотрудников ИНХ СО РАН - в репортаже Вести Новосибирск. "Победить рак пытаются Новосибирские учёные при поддержке Росийского научного фонда, они на основе платиновых металлов - иридия и палладия - разработали вещества, способные убивать клетки опухоли".
Вести Новосибирск, 01.08.2023
Иридий, как и палладий, платина, золото - вещества благородные. Редкие. Дорогие. Учёные давно доказали - в соединении с другими веществами они, как рыцари, способны сражаться с самыми коварными онкологическими болезнями. Но после такого лечения нужна сложная реабилитация - лечение влияет и на здоровые клетки организма. Задача учёных - минимизировать такие последствия. Они экспериментируют, смешивая благородные металлы с другими веществами. Смеси называют легандами.
«Поскольку эта область изначально в качестве лекарственных препаратов именно с диаминовым соединением остаётся востребованной. И введение таких новых легандов, как наши диаминовые леганды, способно продвинуть эту область вперед, поскольку практически таких исследований не было», - рассказывает младший научный сотрудник Института неорганической химии СО РАН Николай Ромашев.
Благородные металлы в паре со специфическими азотосодержащими молекулами молниеносно вступают в окислительно-восстановительные реакции. Образуются активные свободные радикалы, частицы. Они-то и способны разрушать раковые клетки. Новосибирские учёные создали такие гибриды на основе иридия, палладия.
«Они способны взаимодействовать с молекулами ДНК, входить в их структуру. Что приводит к нарушению их функций. Это один из механизмов, а второй механизм действия - это генерация активных форм кислорода, которые и дальше будут усиливать окислительный стресс, который приведёт к гибели раковой клетки», - рассказывает заведующий лабораторией Института неорганической химии СО РАН Артём Гущин.
Теперь учёным предстоит изучить, как вещество взаимодействует не только с раковыми клетками, но и с живыми. На первых экспериментах соединения уже зарекомендовали себя положительно.
Теперь учёным предстоит подтвердить работу двойного механизма действия соединений иридия в организме человека. Но пока исследования будут проходить только на клеточном уровне. Кстати, химики уже подтвердили - гибель раковых клеток происходит и после их взаимодействия с другими соединениями на основе палладия. А это значит, гибель раковых клеток возможна и после их взаимодействия с соединениями иридия.
Новость в других изданиях
Благородные металлы против рака. 10.08.2023
Сибирские ученые синтезировали уникальные соединения, которые убивают раковые клетки. 10.08.2023
В журнале Chemical Communications (IF = 4,9) опубликована статья сотрудников Института Демакова П.А., Дыбцева Д.Н. и Федина В.П.
Позиции двух молекул 2-метил-2-циклопентен-1-она до облучения (слева) и его димера (диастереомер вида «анти- голова-к-хвосту», справа) после облучения. Позиции гостевых молекул и ориентация реагента стабилизированы в апертуре каркаса-хозяина водородными связями CHttdc…Oкетон (оранжевая пунктирная линия). Данные РСА монокристаллов.
Ученые из Института неорганической химии имени А. В. Николаева (Новосибирск) синтезировали три новых комплекса на основе иридия и азотсодержащих ароматических органических молекул. Полученные соединения обладают ярко выраженной окислительно-восстановительной активностью. Это свойство в перспективе можно использовать для генерации активных форм кислорода для уничтожения опухолевых клеток.
О разработаках сотрудников Института ─ в новостях РНФ.
Кроме того, одно из полученных соединений оказалось способно высвобождать оксид азота(II) — биологически активную молекулу, которая также участвует в разрушении клеточных структур. Благодаря этому полученные комплексы потенциально можно будет использовать в противораковой терапии. Результаты исследования, поддержанного грантом РНФ, опубликованы в журнале International Journal of Molecular Sciences (2023, 24, 13, 10457. "Iridium Complexes with BIAN-Type Ligands: Synthesis, Structure and Redox Chemistry").
Комплексные соединения, состоящие из металлов и органических молекул, называемых лигандами, часто используются в качестве катализаторов — веществ, ускоряющих химические реакции. Дело в том, что металл в составе комплексов может отдавать или принимать электроны от других соединений. Это активирует вступающие в реакцию молекулы и позволяет синтезировать из них нужные для химии и фармацевтики продукты. Чтобы комплексное соединение могло взаимодействовать с разнообразными молекулами, то есть проявляло высокую активность, оно должно обладать окислительно-восстановительными способностями в широком диапазоне, то есть «уметь» отдавать и/или принимать большое количество электронов.
С этой точки зрения в качестве катализаторов и биологически активных соединений перспективны комплексы на основе металлов и бис(имино)аценафтенов — азотсодержащих ароматических молекул, обладающих окислительно-восстановительной активностью. Такие органические молекулы способны обратимо принимать до четырех электронов, а потому легко вступают в различные химические превращения. Благодаря этому подобные комплексы потенциально можно использовать не только в катализе, но и в бионеорганической химии, например, для генерации активных форм кислорода с целью уничтожения опухолевых клеток, однако до сих пор их свойства остаются недостаточно изученными.
Ученые из Института неорганической химии имени А. В. Николаева (Новосибирск) синтезировали три новых комплекса иридия с бис(имино)аценафтеном. Иридий представляет собой редкий металл, который, как и его органический «партнер», может находиться в разных окислительно-восстановительных состояниях. Чтобы получить первый комплекс, авторы взяли за основу коммерчески доступное хлорсодержащее соединение иридия и при нагревании смешали его с раствором бис(имино)аценафтена. В результате получили кристаллическое вещество, которое извлекли из раствора выпариванием. Второй и третий комплексы синтезировали на основе первого, добавив к нему азот- и фторсодержащие реагенты.
Затем авторы исследовали строение полученных молекул с помощью рентгеноструктурного анализа. Этот метод позволяет определить взаимное расположение атомов в веществе по тому, как оно рассеивает рентгеновские лучи. Анализ показал, что в каждом из комплексов атом иридия соединяется только с одной молекулой бис(имино)аценафтена. Остальное пространство вокруг иридия занимают вспомогательные лиганды. При этом наиболее необычное строение имел второй комплекс, содержащий молекулу оксида азота(II), расположенную по отношению к иридию «изогнутым» способом. Особенностью этого соединения является его неустойчивость, поскольку оксид азота легко отделяется от остальной части комплекса.
Оксид азота(II) известен своей биологической активностью: он участвует во многих биохимических реакциях в клетке, в частности, способен вступать в реакции с белками, приводя к нарушению их функции. В связи с этим оксид азота, образующийся при распаде полученного авторами комплекса, может потенциально использоваться для борьбы с раком.
«Мы планируем исследовать биологическую активность как уже полученных, так и вновь синтезированных комплексов иридия с бис(имино)аценафтенами на раковых клетках, поскольку такие окислительно-восстановительные системы, по нашему мнению, перспективны для их уничтожения. Если на клеточных культурах эксперименты пройдут успешно, мы сможем продолжить их на мышах», — рассказывает ведущий исполнитель проекта, поддержанного грантом РНФ, Артем Гущин, доктор химических наук, заведующий лабораторией химии комплексных соединений, главный научный сотрудник ИНХ СО РАН.
© ИНХ СО РАН 1998 – 2024 г.